Target-Mimicry-Based miR167 Diminution Confers Salt-Stress Tolerance During In Vitro Organogenesis of Tobacco (Nicotiana tabacum L.)

Author(s):  
Harshita Makkar ◽  
Sakshi Arora ◽  
Aniruddhabhai K. Khuman ◽  
Bhupendra Chaudhary
2020 ◽  
Vol 56 (3) ◽  
pp. 325-334
Author(s):  
Timothy Páez-Watson ◽  
José M. Álvarez-Suárez ◽  
Fernando Rivas-Romero ◽  
Leonardo Estrada ◽  
Doménica López ◽  
...  

2018 ◽  
Vol 22 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Hala Emam ◽  
Enas Ali ◽  
A Al-Ansary ◽  
Nadia Gad ◽  
M Abdel-Hameed ◽  
...  

HortScience ◽  
2011 ◽  
Vol 46 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Pilar Andreu ◽  
Arancha Arbeloa ◽  
Pilar Lorente ◽  
Juan A. Marín

Salt tolerance varies between species and genotypes of plants, but evaluation of these differences is cumbersome, because whole plants that are highly complex systems show a variety of responses depending on the applied methodology. However, focusing on plant roots, which are in direct contact with the soil, could offer a simpler and more efficient model for analyzing salt stress tolerance in different species. This study explores whether root growth under salt stress is associated with genotypic differences in Prunus species with different degrees of salt tolerance. Excised root cultures were grown in vitro under increasing salt concentrations (0, 20, 60, and 180 mm NaCl). Root tips taken from in vitro-rooted shoots of Prunus species with different salt tolerance were measured after 3 weeks of culture in a shaker, and changes in their anatomy were examined. Both growth and starch content of in vitro root cultures were affected by salt concentration. Root length increments were related to salt stress tolerance at 60 mm NaCl, in which significant differences were also found between species. A significant inverse correlation was found between salt tolerance and starch accumulation in the maturation zone of root tips. Genotypic differences were observed in agreement with species' salt stress tolerance in vivo. These results suggest the use of excised root cultures for rapid, early detection of salt stress tolerance in plants. Chemical names: sodium chloride (NaCl).


2022 ◽  
Author(s):  
Brendan F. Hallahan ◽  
Galina Brychkova ◽  
Peter McKeown ◽  
Charles Spillane

Abstract Improving the salt stress tolerance of crops is an important goal in plant breeding. Changes in the number of chromosome pairs (i.e. ploidy level) cause genome dosage effects which can result in improved traits or emergence of novel traits. The genetic and epigenetic contribution of maternal or paternal chromosomes can differentially affect physiological and metabolic characteristics of F1 offspring. Hence genome dosage effects can be parent-of-origin independent or dependent. The model plant Arabidopsis thaliana displays both genome dosage and parent-of-origin effects on plant growth under normal, non-stress conditions. Using an insogenic ploidy series of diploid, triploid and tetraploid lines we investigate the extent of genome dosage effects and their parent-of-origin dependency on in vitro salt stress tolerance of seedlings across ten different A. thaliana accessions (genetic backgrounds). We demonstrate genome dosage effects on salt stress tolerance in five accessions, and using reciprocal triploid lines demonstrate parent-of-origin dependent genome dosage effects on salt stress tolerance in three accessions. Our results indicate that epigenetic genome dosage and genome dosage balance effects can have significant impacts on abiotic stress tolerance in plants.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 782
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Myung Geun Ji ◽  
Gyeong-Im Shin ◽  
Song Yi Jeong ◽  
...  

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


2021 ◽  
Vol 13 (14) ◽  
pp. 8030
Author(s):  
Shehzad Mehmood ◽  
Amir Abdullah Khan ◽  
Fuchen Shi ◽  
Muhammad Tahir ◽  
Tariq Sultan ◽  
...  

Plant growth-promoting rhizobacteria play a substantial role in plant growth and development under biotic and abiotic stress conditions. However, understanding about the functional role of rhizobacterial strains for wheat growth under salt stress remains largely unknown. Here we investigated the antagonistic bacterial strain Bacillus aryabhattai PM34 inhabiting ACC deaminase and exopolysaccharide producing ability to ameliorate salinity stress in wheat seedlings under in vitro conditions. The strain PM34 was isolated from the potato rhizosphere and screened for different PGP traits comprising nitrogen fixation, potassium, zinc solubilization, indole acetic acid, siderophore, and ammonia production, along with various extracellular enzyme activities. The strain PM34 showed significant tolerance towards both abiotic stresses including salt stress (NaCl 2 M), heavy metal (nickel, 100 ppm, and cadmium, 300 ppm), heat stress (60 °C), and biotic stress through mycelial inhibition of Rhizoctonia solani (43%) and Fusarium solani (41%). The PCR detection of ituC, nifH, and acds genes coding for iturin, nitrogenase, and ACC deaminase enzyme indicated the potential of strain PM34 for plant growth promotion and stress tolerance. In the in vitro experiment, NaCl (2 M) decreased the wheat growth while the inoculation of strain PM34 enhanced the germination% (48%), root length (76%), shoot length (75%), fresh biomass (79%), and dry biomass (87%) over to un-inoculated control under 2M NaCl level. The results of experiments depicted the ability of antagonistic bacterial strain Bacillus aryabhattai PM34 to augment salt stress tolerance when inoculated to wheat plants under saline environment.


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document