Genome-Wide Characterization, Evolution, and Expression Analysis of the Ascorbate Peroxidase and Glutathione Peroxidase Gene Families in Response to Cold and Osmotic Stress in Ammopiptanthus nanus

Author(s):  
Ying Wang ◽  
Shilin Cao ◽  
Xiangyu Sui ◽  
Jing Wang ◽  
Yuke Geng ◽  
...  
Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 472 ◽  
Author(s):  
Cao ◽  
Wang ◽  
Li ◽  
Shi ◽  
Gao ◽  
...  

Chitinase is a kind of hydrolase with chitin as a substrate and is proposed to play an essential role in plant defense system by functioning against fungal pathogens through degrading chitin. Recent studies indicated chitinase is also involved in abiotic stress response in plants, helping plants to survive in stressful environments. A. nanus, a rare evergreen broad-leaved shrub distrusted in deserts in Central Asia, exhibits a high level of tolerance to drought and low temperature stresses. To identify the chitinase gene involved in drought and low temperature responses in A. nanus, we performed genome-wide identification, classification, sequence alignment, and spatio-temporal gene expression analysis of the chitinases in A. nanus under osmotic and low temperature stress. A total of 32 chitinase genes belonging to glycosyl hydrolase 18 (GH18) and GH19 families were identified from A. nanus. Class III chitinases appear to be amplified quantitatively in A. nanus, and their genes carry less introns, indicating their involvement in stress response in A. nanus. The expression level of the majority of chitinases varied in leaves, stems, and roots, and regulated under environmental stress. Some chitinases, such as EVM0022783, EVM0020238, and EVM0003645, are strongly induced by low temperature and osmotic stress, and the MYC/ICE1 (inducer of CBF expression 1) binding sites in promoter regions may mediate the induction of these chitinases under stress. These chitinases might play key roles in the tolerance to these abiotic stress in A. nanus and have potential for biotechnological applications. This study provided important data for understanding the biological functions of chitinases in A. nanus.


Gene ◽  
2021 ◽  
Vol 770 ◽  
pp. 145348
Author(s):  
Lingyu Jiang ◽  
Wenjing Hu ◽  
Yexiong Qian ◽  
Qiaoyu Ren ◽  
Jing Zhang

Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Yuxuan Fan ◽  
Wei Yang ◽  
Qingxia Yan ◽  
Chunrui Chen ◽  
Jinhua Li

The protease inhibitors (PIs) in plants are involved primarily in defense against pathogens and pests and in response to abiotic stresses. However, information about the PI gene families in tomato (Solanum lycopersicum), one of the most important model plant for crop species, is limited. In this study, in silico analysis identified 55 PI genes and their conserved domains, phylogenetic relationships, and chromosome locations were characterized. According to genetic structure and evolutionary relationships, the PI gene families were divided into seven families. Genome-wide microarray transcription analysis indicated that the expression of SlPI genes can be induced by abiotic (heat, drought, and salt) and biotic (Botrytis cinerea and tomato spotted wilt virus (TSWV)) stresses. In addition, expression analysis using RNA-seq in various tissues and developmental stages revealed that some SlPI genes were highly or preferentially expressed, showing tissue- and developmental stage-specific expression profiles. The expressions of four representative SlPI genes in response to abscisic acid (ABA), salicylic acid (SA), ethylene (Eth), gibberellic acid (GA). and methyl viologen (MV) were determined. Our findings indicated that PI genes may mediate the response of tomato plants to environmental stresses to balance hormone signals. The data obtained here will improve the understanding of the potential function of PI gene and lay a foundation for tomato breeding and transgenic resistance to stresses.


Sign in / Sign up

Export Citation Format

Share Document