scholarly journals Genome-Wide Identification and Expression Analysis of the Protease Inhibitor Gene Families in Tomato

Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Yuxuan Fan ◽  
Wei Yang ◽  
Qingxia Yan ◽  
Chunrui Chen ◽  
Jinhua Li

The protease inhibitors (PIs) in plants are involved primarily in defense against pathogens and pests and in response to abiotic stresses. However, information about the PI gene families in tomato (Solanum lycopersicum), one of the most important model plant for crop species, is limited. In this study, in silico analysis identified 55 PI genes and their conserved domains, phylogenetic relationships, and chromosome locations were characterized. According to genetic structure and evolutionary relationships, the PI gene families were divided into seven families. Genome-wide microarray transcription analysis indicated that the expression of SlPI genes can be induced by abiotic (heat, drought, and salt) and biotic (Botrytis cinerea and tomato spotted wilt virus (TSWV)) stresses. In addition, expression analysis using RNA-seq in various tissues and developmental stages revealed that some SlPI genes were highly or preferentially expressed, showing tissue- and developmental stage-specific expression profiles. The expressions of four representative SlPI genes in response to abscisic acid (ABA), salicylic acid (SA), ethylene (Eth), gibberellic acid (GA). and methyl viologen (MV) were determined. Our findings indicated that PI genes may mediate the response of tomato plants to environmental stresses to balance hormone signals. The data obtained here will improve the understanding of the potential function of PI gene and lay a foundation for tomato breeding and transgenic resistance to stresses.

Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Chenghao Zhang ◽  
Wenqi Dong ◽  
Zong-an Huang ◽  
MyeongCheoul Cho ◽  
Qingcang Yu ◽  
...  

Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.


Genome ◽  
2019 ◽  
Vol 62 (10) ◽  
pp. 643-656 ◽  
Author(s):  
Yong Zhou ◽  
Junjie Tao ◽  
Golam Jalal Ahammed ◽  
Jingwen Li ◽  
Youxin Yang

The plant aquaporins (AQPs) are highly conserved integral membrane proteins that participate in multiple developmental processes and responses to various stresses. In this study, a total of 35 AQP genes were identified in the watermelon genome. The phylogenetic analysis showed that these AQPs can be divided into five types, including 16 plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight nodulin 26-like intrinsic proteins (NIPs), two small basic intrinsic proteins (SIPs), and one uncategorized X intrinsic protein (XIP). A number of cis-elements related to plant responses to hormones and stresses were detected in the promoter sequences of ClAQP genes. Chromosome distribution analysis revealed that the genes are unevenly distributed on eight chromosomes, with chromosomes 1 and 4 possessing the most genes. Expression analysis at different developmental stages in flesh and rind indicated that most of ClAQPs have tissue-specific expression. Meanwhile, some other AQP genes showed differential expression in response to cold, salt, and ABA treatments, which is consistent with the organization of the stress-responsive cis-elements detected in the promoter regions. Our results lay a foundation for understanding the specific functions of ClAQP genes to help the genetic improvement of watermelon.


2019 ◽  
Vol 20 (20) ◽  
pp. 5094
Author(s):  
Cao ◽  
Liu ◽  
Guo ◽  
Chen ◽  
Li ◽  
...  

The Dynamin gene family play a significance role in many physiological processes, especially ARC5 (Accumulation and replication of chloroplasts 5) in the process of plastid division. We performed a genome-wide analysis of the cassava Dynamin family based on the published cassava genome sequence and identified ARC5. 23 cassava Dynamins (MeDynamins) were identified and renamed. 23 MeDynamins were further divided into five major groups based on their structural and phylogenetic characteristics. The segmental duplication events have a significant impact on the expansion of MeDynamins. ARC5 expression analysis showed that there were differences between leaves and roots of cassava at different developmental stages. The tissue-specific expression analysis of the MeDynamins showed that most of MeDynamins were expressed in stem apical meristem and embryogenesis, whereas ARC5 was mainly expressed in leaves. The processing of IAA (Indole-3-acetic Acid) and MeJA (Methyl Jasmonate) verified the prediction results of cis-elements, and ACR5 was closely related to plant growth and positively correlated. It also indicated that high concentrations of MeJA treatment caused the cassava defense mechanism to function in advance. In conclusion, these findings provide basic insights for functional validation of the ARC5 genes in exogenous hormonal treatments.


2021 ◽  
Vol 22 (10) ◽  
pp. 5291
Author(s):  
Shengnan Song ◽  
Jun You ◽  
Lisong Shi ◽  
Chen Sheng ◽  
Wangyi Zhou ◽  
...  

The biosynthesis and storage of lipids in oil crop seeds involve many gene families, such as nonspecific lipid-transfer proteins (nsLTPs). nsLTPs are cysteine-rich small basic proteins essential for plant development and survival. However, in sesame, information related to nsLTPs was limited. Thus, the objectives of this study were to identify the Sesamum indicum nsLTPs (SiLTPs) and reveal their potential role in oil accumulation in sesame seeds. Genome-wide analysis revealed 52 SiLTPs, nonrandomly distributed on 10 chromosomes in the sesame variety Zhongzhi 13. Following recent classification methods, the SiLTPs were divided into nine types, among which types I and XI were the dominants. We found that the SiLTPs could interact with several transcription factors, including APETALA2 (AP2), DNA binding with one finger (Dof), etc. Transcriptome analysis showed a tissue-specific expression of some SiLTP genes. By integrating the SiLTPs expression profiles and the weighted gene co-expression network analysis (WGCNA) results of two contrasting oil content sesame varieties, we identified SiLTPI.23 and SiLTPI.28 as the candidate genes for high oil content in sesame seeds. The presumed functions of the candidate gene were validated through overexpression of SiLTPI.23 in Arabidopsis thaliana. These findings expand our knowledge on nsLTPs in sesame and provide resources for functional studies and genetic improvement of oil content in sesame seeds.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1465
Author(s):  
Ramon de Koning ◽  
Raphaël Kiekens ◽  
Mary Esther Muyoka Toili ◽  
Geert Angenon

Raffinose family oligosaccharides (RFO) play an important role in plants but are also considered to be antinutritional factors. A profound understanding of the galactinol and RFO biosynthetic gene families and the expression patterns of the individual genes is a prerequisite for the sustainable reduction of the RFO content in the seeds, without compromising normal plant development and functioning. In this paper, an overview of the annotation and genetic structure of all galactinol- and RFO biosynthesis genes is given for soybean and common bean. In common bean, three galactinol synthase genes, two raffinose synthase genes and one stachyose synthase gene were identified for the first time. To discover the expression patterns of these genes in different tissues, two expression atlases have been created through re-analysis of publicly available RNA-seq data. De novo expression analysis through an RNA-seq study during seed development of three varieties of common bean gave more insight into the expression patterns of these genes during the seed development. The results of the expression analysis suggest that different classes of galactinol- and RFO synthase genes have tissue-specific expression patterns in soybean and common bean. With the obtained knowledge, important galactinol- and RFO synthase genes that specifically play a key role in the accumulation of RFOs in the seeds are identified. These candidate genes may play a pivotal role in reducing the RFO content in the seeds of important legumes which could improve the nutritional quality of these beans and would solve the discomforts associated with their consumption.


2021 ◽  
Vol 22 (12) ◽  
pp. 6556
Author(s):  
Junjun Huang ◽  
Xiaoyu Li ◽  
Xin Chen ◽  
Yaru Guo ◽  
Weihong Liang ◽  
...  

ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


2020 ◽  
Author(s):  
◽  
Alwyn Clark Go

Speciation occurs when reproductive barriers prevent the exchange of genetic information between individuals. A common form of reproductive barrier between species capable of interbreeding is hybrid sterility. Genomic incompatibilities between the divergent genomes of different species contribute to a reduction in hybrid fitness. These incompatibilities continue to accumulate after speciation, therefore, young divergent taxa with incomplete reproductive isolation are important in understating the genetics leading to speciation. Here, I use two Drosophila subspecies pairs. The first is D. willistoni consisting of D. w. willistoni and D. w. winge. The second subspecies pair is D. pseudoobscura, which is composed of D. p. pseudoobscura and D. p. bogotana. Both subspecies pairs are at the early stages of speciation and show incomplete reproductive isolation through unidirectional hybrid male sterility. In this thesis, I performed an exploratory survey of genome-wide expression analysis using RNA-sequencing on D. willistoni and determined the extent of regulatory divergence between the subspecies using allele-specific expression analysis. I found that misexpressed genes showed a degree of tissue specificity and that the sterile male hybrids had a higher proportion of misexpressed genes in the testes relative to the fertile hybrids. The analysis of regulatory divergence between this subspecies pair found a large (66-70%) proportion of genes with conserved regulatory elements. Of the genes showing evidence or regulatory divergence between subspecies, cis-regulatory divergence was more common than other types. In the D. pseudoobscura subspecies pair, I compared sequence and expression divergence and found no support for directional selection driving gene misexpression in their hybrids. Allele-specific expression analysis revealed that compensatory cis-trans mutations partly explained gene misexpression in the hybrids. The remaining hybrid misexpression occurs due to interacting gene networks or possible co-option of cis-regulatory elements by divergent transacting factors. Overall, the results of this thesis highlight the role of regulatory interactions in a hybrid genome and how these interactions could lead to hybrid breakdown by disrupting gene interaction networks.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5816 ◽  
Author(s):  
Lidong Hao ◽  
Xiuli Qiao

As one of the non-selective cation channel gene families, the cyclic nucleotide-gated channel (CNGC) gene family plays a vital role in plant physiological processes that are related to signal pathways, plant development, and environmental stresses. However, genome-wide identification and analysis of the CNGC gene family in maize has not yet been undertaken. In the present study, twelve ZmCNGC genes were identified in the maize genome, which were unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7, and 8. They were classified into five major groups: Groups I, II, III, IVa, and IVb. Phylogenetic analysis showed that gramineous plant CNGC genes expanded unequally during evolution. Group IV CNGC genes emerged first, whereas Groups I and II appeared later. Prediction analysis of cis-acting regulatory elements showed that 137 putative cis-elements were related to hormone-response, abiotic stress, and organ development. Furthermore, 120 protein pairs were predicted to interact with the 12 ZmCNGC proteins and other maize proteins. The expression profiles of the ZmCNGC genes were expressed in tissue-specific patterns. These results provide important information that will increase our understanding of the CNGC gene family in maize and other plants.


Sign in / Sign up

Export Citation Format

Share Document