scholarly journals Cloud Radiative Forcing at Summit, Greenland

2015 ◽  
Vol 28 (15) ◽  
pp. 6267-6280 ◽  
Author(s):  
Nathaniel B. Miller ◽  
Matthew D. Shupe ◽  
Christopher J. Cox ◽  
Von P. Walden ◽  
David D. Turner ◽  
...  

Abstract The surface energy budget plays a critical role in determining the mass balance of the Greenland Ice Sheet, which in turn has significant implications for global sea levels. Nearly three years of data (January 2011–October 2013) are used to characterize the annual cycle of surface radiative fluxes and cloud radiative forcing (CRF) from the central Greenland Ice Sheet at Summit Station. The annual average CRF is 33 W m−2, representing a substantial net cloud warming of the central Greenland surface. Unlike at other Arctic sites, clouds warm the surface during the summer. The surface albedo is high at Summit throughout the year, limiting the cooling effect of the shortwave CRF and thus the total CRF is dominated by cloud longwave warming effects in all months. All monthly mean CRF values are positive (warming), as are 98.5% of 3-hourly cases. The annual cycle of CRF is largely driven by the occurrence of liquid-bearing clouds, with a minimum in spring and maximum in late summer. Optically thick liquid-bearing clouds [liquid water path (LWP) > 30 g m−2] produce an average longwave CRF of 85 W m−2. Shortwave CRF is sensitive to solar zenith angle and LWP. When the sun is well above the horizon (solar zenith angle < 65°), a maximum cloud surface warming occurs in the presence of optically thin liquid-bearing clouds. Ice clouds occur frequently above Summit and have mean longwave CRF values ranging from 10 to 60 W m−2, dependent on cloud thickness.

2010 ◽  
Vol 37 (7-8) ◽  
pp. 1643-1660 ◽  
Author(s):  
Joseph Sedlar ◽  
Michael Tjernström ◽  
Thorsten Mauritsen ◽  
Matthew D. Shupe ◽  
Ian M. Brooks ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 227
Author(s):  
Arthur Elmes ◽  
Charlotte Levy ◽  
Angela Erb ◽  
Dorothy K. Hall ◽  
Ted A. Scambos ◽  
...  

In mid-June 2019, the Greenland ice sheet (GrIS) experienced an extreme early-season melt event. This, coupled with an earlier-than-average melt onset and low prior winter snowfall over western Greenland, led to a rapid decrease in surface albedo and greater solar energy absorption over the melt season. The 2019 melt season resulted in significantly more melt than other recent years, even compared to exceptional melt years previously identified in the moderate-resolution imaging spectroradiometer (MODIS) record. The increased solar radiation absorbance in 2019 warmed the surface and increased the rate of meltwater production. We use two decades of satellite-derived albedo from the MODIS MCD43 record to show a significant and extended decrease in albedo in Greenland during 2019. This decrease, early in the melt season and continuing during peak summer insolation, caused increased radiative forcing of the ice sheet of 2.33 Wm−2 for 2019. Radiative forcing is strongly influenced by the dramatic seasonal differences in surface albedo experienced by any location experiencing persistent and seasonal snow-cover. We also illustrate the utility of the newly developed Landsat-8 albedo product for better capturing the detailed spatial heterogeneity of the landscape, leading to a more refined representation of the surface energy budget. While the MCD43 data accurately capture the albedo for a given 500 m pixel, the higher spatial resolution 30 m Landsat-8 albedos more fully represent the detailed landscape variations.


2017 ◽  
Vol 11 (1) ◽  
pp. 497-516 ◽  
Author(s):  
Nathaniel B. Miller ◽  
Matthew D. Shupe ◽  
Christopher J. Cox ◽  
David Noone ◽  
P. Ola G. Persson ◽  
...  

Abstract. Greenland Ice Sheet surface temperatures are controlled by an exchange of energy at the surface, which includes radiative, turbulent, and ground heat fluxes. Data collected by multiple projects are leveraged to calculate all surface energy budget (SEB) terms at Summit, Greenland, for the full annual cycle from July 2013 to June 2014 and extend to longer periods for the radiative and turbulent SEB terms. Radiative fluxes are measured directly by a suite of broadband radiometers. Turbulent sensible heat flux is estimated via the bulk aerodynamic and eddy correlation methods, and the turbulent latent heat flux is calculated via a two-level approach using measurements at 10 and 2 m. The subsurface heat flux is calculated using a string of thermistors buried in the snow pack. Extensive quality-control data processing produced a data set in which all terms of the SEB are present 75 % of the full annual cycle, despite the harsh conditions. By including a storage term for a near-surface layer, the SEB is balanced in this data set to within the aggregated uncertainties for the individual terms. November and August case studies illustrate that surface radiative forcing is driven by synoptically forced cloud characteristics, especially by low-level, liquid-bearing clouds. The annual cycle and seasonal diurnal cycles of all SEB components indicate that the non-radiative terms are anticorrelated to changes in the total radiative flux and are hence responding to cloud radiative forcing. Generally, the non-radiative SEB terms and the upwelling longwave radiation component compensate for changes in downwelling radiation, although exact partitioning of energy in the response terms varies with season and near-surface characteristics such as stability and moisture availability. Substantial surface warming from low-level clouds typically leads to a change from a very stable to a weakly stable near-surface regime with no solar radiation or from a weakly stable to neutral/unstable regime with solar radiation. Relationships between forcing terms and responding surface fluxes show that the upwelling longwave radiation produces 65–85 % (50–60 %) of the total response in the winter (summer) and the non-radiative terms compensate for the remaining change in the combined downwelling longwave and net shortwave radiation. Because melt conditions are rarely reached at Summit, these relationships are documented for conditions of surface temperature below 0 °C, with and without solar radiation. This is the first time that forcing and response term relationships have been investigated in detail for the Greenland SEB. These results should both advance understanding of process relationships over the Greenland Ice Sheet and be useful for model validation.


2014 ◽  
Vol 7 (4) ◽  
pp. 4353-4381
Author(s):  
M. Bügelmayer ◽  
D. M. Roche ◽  
H. Renssen

Abstract. Recent modelling studies have indicated that icebergs alter the ocean's state, the thickness of sea ice and the prevailing atmospheric conditions, in short play an active role in the climate system. The icebergs' impact is due to their slowly released melt water which freshens and cools the ocean. The spatial distribution of the icebergs and thus their melt water depends on the forces (atmospheric and oceanic) acting on them as well as on the icebergs' size. The studies conducted so far have in common that the icebergs were moved by reconstructed or modelled forcing fields and that the initial size distribution of the icebergs was prescribed according to present day observations. To address these shortcomings, we used the climate model iLOVECLIM that includes actively coupled ice-sheet and iceberg modules, to conduct 15 sensitivity experiments to analyse (1) the impact of the forcing fields (atmospheric vs. oceanic) on the icebergs' distribution and melt flux, and (2) the effect of the used initial iceberg size on the resulting Northern Hemisphere climate and ice sheet under different climate conditions (pre-industrial, strong/weak radiative forcing). Our results show that, under equilibrated pre-industrial conditions, the oceanic currents cause the bergs to stay close to the Greenland and North American coast, whereas the atmospheric forcing quickly distributes them further away from their calving site. These different characteristics strongly affect the lifetime of icebergs, since the wind-driven icebergs melt up to two years faster as they are quickly distributed into the relatively warm North Atlantic waters. Moreover, we find that local variations in the spatial distribution due to different iceberg sizes do not result in different climate states and Greenland ice sheet volume, independent of the prevailing climate conditions (pre-industrial, warming or cooling climate). Therefore, we conclude that local differences in the distribution of their melt flux do not alter the prevailing Northern Hemisphere climate and ice sheet under equilibrated conditions und constant supply of icebergs. Furthermore, our results suggest that the applied radiative forcing scenarios have a stronger impact on climate than the used initial size distribution of the icebergs.


2009 ◽  
Vol 22 (9) ◽  
pp. 2316-2334 ◽  
Author(s):  
John E. Walsh ◽  
William L. Chapman ◽  
Diane H. Portis

Abstract Arctic radiative fluxes, cloud fraction, and cloud radiative forcing are evaluated from four currently available reanalysis models using data from the North Slope of Alaska (NSA) Barrow site of the Atmospheric Radiation Measurement Program (ARM). A primary objective of the ARM–NSA program is to provide a high-resolution dataset of direct measurements of Arctic clouds and radiation so that global climate models can better parameterize high-latitude cloud radiative processes. The four reanalysis models used in this study are the 1) NCEP–NCAR global reanalysis, 2) 40-yr ECMWF Re-Analysis (ERA-40), 3) NCEP–NCAR North American Regional Reanalysis (NARR), and 4) Japan Meteorological Agency and Central Research Institute of Electric Power Industry 25-yr Reanalysis (JRA25). The reanalysis models simulate the radiative fluxes well if/when the cloud fraction is simulated correctly. However, the systematic errors of climatological reanalysis cloud fractions are substantial. Cloud fraction and radiation biases show considerable scatter, both in the annual mean and over a seasonal cycle, when compared to those observed at the ARM–NSA. Large seasonal cloud fraction biases have significant impacts on the surface energy budget. Detailed comparisons of ARM and reanalysis products reveal that the persistent low-level cloud fraction in summer is particularly difficult for the reanalysis models to capture creating biases in the shortwave radiation flux that can exceed 160 W m−2. ERA-40 is the best performer in both shortwave and longwave flux seasonal representations at Barrow, largely because its simulation of the cloud coverage is the most realistic of the four reanalyses. Only two reanalyses (ERA-40 and NARR) capture the observed transition from positive to negative surface net cloud radiative forcing during a 2–3-month period in summer, while the remaining reanalyses indicate a net warming impact of Arctic clouds on the surface energy budget throughout the entire year. The authors present a variable cloud radiative forcing metric to diagnose the erroneous impact of reanalysis cloud fraction on the surface energy balance. The misrepresentations of cloud radiative forcing in some of the reanalyses are attributable to errors in both simulated cloud amounts and the models’ radiative response to partly cloudy conditions.


2019 ◽  
Vol 19 (11) ◽  
pp. 7467-7485
Author(s):  
Christopher J. Cox ◽  
David C. Noone ◽  
Max Berkelhammer ◽  
Matthew D. Shupe ◽  
William D. Neff ◽  
...  

Abstract. Radiation fogs at Summit Station, Greenland (72.58∘ N, 38.48∘ W; 3210 m a.s.l.), are frequently reported by observers. The fogs are often accompanied by fogbows, indicating the particles are composed of liquid; and because of the low temperatures at Summit, this liquid is supercooled. Here we analyze the formation of these fogs as well as their physical and radiative properties. In situ observations of particle size and droplet number concentration were made using scattering spectrometers near 2 and 10 m height from 2012 to 2014. These data are complemented by colocated observations of meteorology, turbulent and radiative fluxes, and remote sensing. We find that liquid fogs occur in all seasons with the highest frequency in September and a minimum in April. Due to the characteristics of the boundary-layer meteorology, the fogs are elevated, forming between 2 and 10 m, and the particles then fall toward the surface. The diameter of mature particles is typically 20–25 µm in summer. Number concentrations are higher at warmer temperatures and, thus, higher in summer compared to winter. The fogs form at temperatures as warm as −5 ∘C, while the coldest form at temperatures approaching −40 ∘C. Facilitated by the elevated condensation, in winter two-thirds of fogs occurred within a relatively warm layer above the surface when the near-surface air was below −40 ∘C, as cold as −57 ∘C, which is too cold to support liquid water. This implies that fog particles settling through this layer of cold air freeze in the air column before contacting the surface, thereby accumulating at the surface as ice without riming. Liquid fogs observed under otherwise clear skies annually imparted 1.5 W m−2 of cloud radiative forcing (CRF). While this is a small contribution to the surface radiation climatology, individual events are influential. The mean CRF during liquid fog events was 26 W m−2, and was sometimes much higher. An extreme case study was observed to radiatively force 5 ∘C of surface warming during the coldest part of the day, effectively damping the diurnal cycle. At lower elevations of the ice sheet where melting is more common, such damping could signal a role for fogs in preconditioning the surface for melting later in the day.


2012 ◽  
Vol 51 (7) ◽  
pp. 1391-1406 ◽  
Author(s):  
U. Schumann ◽  
B. Mayer ◽  
K. Graf ◽  
H. Mannstein

AbstractA new parameterized analytical model is presented to compute the instantaneous radiative forcing (RF) at the top of the atmosphere (TOA) produced by an additional thin contrail cirrus layer (called “contrail” below). The model calculates the RF using as input the outgoing longwave radiation and reflected solar radiation values at TOA for a contrail-free atmosphere, so that the model is applicable for both cloud-free and cloudy ambient atmospheres. Additional input includes the contrail temperature, contrail optical depth (at 550 nm), effective particle radius, particle habit, solar zenith angle, and the optical depth of cirrus above the contrail layer. The model parameters (5 for longwave and 10 for shortwave) are determined from least squares fits to calculations from the “libRadtran” radiative transfer model over a wide range of atmospheric and surface conditions. The correlation coefficient between model and calculations is larger than 98%. The analytical model is compared with published results, including a 1-yr simulation of global RF, and is found to agree well with previous studies. The fast analytical model is part of a larger modeling system to simulate contrail life cycles (“CoCiP”) and can allow for the rapid simulation of contrail cirrus RF over a wide range of meteorological conditions and for a given size-dependent habit mixture. Ambient clouds are shown to have large local impact on the net RF of contrails. Net RF of contrails may both increase and decrease and even change sign in the presence of higher-level cirrus, depending on solar zenith angle.


2008 ◽  
Vol 8 (6) ◽  
pp. 20399-20425 ◽  
Author(s):  
H. Guo ◽  
Y. Liu ◽  
P. H. Daum ◽  
X. Zeng ◽  
X. Li ◽  
...  

Abstract. We undertook three-dimensional numerical studies of a marine stratus deck under a strong inversion using an interactive shortwave- and longwave-radiation module. A suite of sensitivity tests were conducted to address the effects of model resolution on entrainment (inversion heights), cloud-radiation interactions, and cloud radiative-forcings by varying model horizontal resolution only, varying vertical resolution only, and varying horizontal- and vertical-resolution simultaneously but with a fixed aspect ratio of 2.5. Our results showed that entrainment (inversion height) is more sensitive to vertical- than to horizontal-resolution. A vertical resolution finer than 40 m can simulate spatial- and temporal-variations in the inversion height well. The inversion height decreases with increasing vertical resolution, but tends to increase with increasing horizontal resolution. Cloud liquid water path doubles after refining both the vertical- and horizontal-resolution by a factor of four. This doubling is associated with a positive feedback between cloud water and cloud top radiative cooling, which amplifies small differences initiated by changes in the model resolution. The magnitude of the cloud radiative-forcing tends to increase with increasing model resolution, mainly attributable to the increase in the cloud liquid water path. Shortwave radiative forcing is dominant, and more sensitive to model resolution than the longwave counterpart.


Sign in / Sign up

Export Citation Format

Share Document