Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain

2016 ◽  
Vol 48 (9-10) ◽  
pp. 2901-2917 ◽  
Author(s):  
Junhua Yang ◽  
Keqin Duan ◽  
Shichang Kang ◽  
Peihong Shi ◽  
Zhenming Ji
2014 ◽  
Vol 14 (13) ◽  
pp. 7091-7112 ◽  
Author(s):  
C. He ◽  
Q. B. Li ◽  
K. N. Liou ◽  
J. Zhang ◽  
L. Qi ◽  
...  

Abstract. We systematically evaluate the black carbon (BC) simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model (CTM) (GEOS-Chem) driven by GEOS-5 assimilated meteorological fields, using in situ measurements of BC in surface air, BC in snow, and BC absorption aerosol optical depth (AAOD). Using improved anthropogenic BC emission inventories for Asia that account for rapid technology renewal and energy consumption growth (Zhang et al., 2009; Lu et al., 2011) and improved global biomass burning emission inventories that account for small fires (van der Werf et al., 2010; Randerson et al., 2012), we find that model results of both BC in surface air and in snow are statistically in good agreement with observations (biases < 15%) away from urban centers. Model results capture the seasonal variations of the surface BC concentrations at rural sites in the Indo-Gangetic Plain, but the observed elevated values in winter are absent. Modeled surface-BC concentrations are within a factor of 2 of the observations at remote sites. Part of the discrepancy is explained by the deficiencies of the meteorological fields over the complex Tibetan terrain. We find that BC concentrations in snow computed from modeled BC deposition and GEOS-5 precipitation are spatiotemporally consistent with observations (r = 0.85). The computed BC concentrations in snow are a factor of 2–4 higher than the observations at several Himalayan sites because of excessive BC deposition. The BC concentrations in snow are biased low by a factor of 2 in the central plateau, which we attribute to the absence of snow aging in the CTM and strong local emissions unaccounted for in the emission inventories. Modeled BC AAOD is more than a factor of 2 lower than observations at most sites, particularly to the northwest of the plateau and along the southern slopes of the Himalayas in winter and spring, which is attributable in large part to underestimated emissions and the assumption of external mixing of BC aerosols in the model. We find that assuming a 50% increase of BC absorption associated with internal mixing reduces the bias in modeled BC AAOD by 57% in the Indo-Gangetic Plain and the northeastern plateau and to the northeast of the plateau, and by 16% along the southern slopes of the Himalayas and to the northwest of the plateau. Both surface BC concentration and AAOD are strongly sensitive to anthropogenic emissions (from China and India), while BC concentration in snow is especially responsive to the treatment of BC aerosol aging. We find that a finer model resolution (0.5° × 0.667° nested over Asia) reduces the bias in modeled surface-BC concentration from 15 to 2%. The large range and non-homogeneity of discrepancies between model results and observations of BC across the Tibetan Plateau undoubtedly undermine current assessments of the climatic and hydrological impact of BC in the region and thus warrant imperative needs for more extensive measurements of BC, including its concentration in surface air and snow, AAOD, vertical profile and deposition.


2014 ◽  
Vol 14 (6) ◽  
pp. 7305-7354
Author(s):  
C. He ◽  
Q. B. Li ◽  
K. N. Liou ◽  
J. Zhang ◽  
L. Qi ◽  
...  

Abstract. We evaluate the black carbon (BC) simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model using surface observations of BC in surface air and in snow and BC absorption aerosol optical depth (AAOD). Using updated Asian anthropogenic BC emissions (Lu et al., 2011; Zhang et al., 2009) and global biomass burning emissions (Randerson et al., 2012; van der Werf et al., 2010), model results of both surface BC and BC in snow are statistically in good agreement with observations (biases < 15%). Model results capture the seasonal variation of surface BC concentration, but the observed wintertime high values at rural sites in the Indo-Gangetic Plain are absent in the model. Model results are in general agreement with observations (within a factor of two) at remote sites. Model simulated BC concentrations in snow are spatiotemporally consistent with observations at most sites. We find that modeled BC AAOD are significantly lower than observations to the northwest of the Plateau and along the southern slopes of the Himalayas during winter and spring, reflecting model deficiencies in emissions, topography and BC mixing state. We find that anthropogenic emissions strongly affect surface BC concentration and AAOD, while the BC aging mainly affects BC in snow over the Plateau.


2015 ◽  
Vol 15 (11) ◽  
pp. 6007-6021 ◽  
Author(s):  
Z. L. Lüthi ◽  
B. Škerlak ◽  
S.-W. Kim ◽  
A. Lauer ◽  
A. Mues ◽  
...  

Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines ground-based and satellite remote sensing data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009 (pre-monsoon). Trajectory calculations based on the high-resolution numerical weather prediction model COSMO are used to locate the source regions and study the mechanisms of pollution transport in the complex topography of the HTP. We detail how polluted air masses from an atmospheric brown cloud (ABC) over South Asia reach the Tibetan Plateau within a few days. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic-scale and local meteorological processes. During the days prior to the event, winds over the Indo-Gangetic Plain (IGP) are generally weak at lower levels, allowing for accumulation of pollutants and thus the formation of ABCs. The subsequent passing of synoptic-scale troughs leads to southwesterly flow in the middle troposphere over northern and central India, carrying the polluted air masses across the Himalayas. As the IGP is known to be a hotspot of ABCs, the cross-Himalayan transport of polluted air masses may have serious implications for the cryosphere in the HTP and impact climate on regional to global scales. Since the current study focuses on one particularly strong pollution episode, quantifying the frequency and magnitude of similar events in a climatological study is required to assess the total impact.


2014 ◽  
Vol 14 (20) ◽  
pp. 28105-28146 ◽  
Author(s):  
Z. L. Lüthi ◽  
B. Škerlak ◽  
S.-W. Kim ◽  
A. Lauer ◽  
A. Mues ◽  
...  

Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines the available yet sparse ground-based and satellite data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009. We detail how polluted air masses such as an atmospheric brown cloud (ABC) over South Asia reached the Tibetan Plateau during this pre-monsoon case study. In order to address the mechanisms of pollution transport in the complex topography of the HTP, air-mass trajectories are calculated using hourly outputs from the high-resolution numerical weather prediction model COSMO. Cross-mountain pollution transport is found to occur to a large extent at elevated tropospheric levels other than just through major river valleys. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic and local meteorological settings. Winds over the Indo Gangetic Plain (IGP) are generally weak at lower levels during the event, allowing for accumulation of pollutants. The passing of synoptic-scale troughs leads to south-westerly flow in the middle troposphere over northern and central India. Thus, ABC can build up south of the Himalayas and get carried northwards across the mountain range and onto the Tibetan Plateau as the winds obtain a southerly component. Air masses from the ABC hot-spot of the IGP can reach the high glaciers, which may have serious implications for the cryosphere in the HTP region and for climate on regional to global scales.


2017 ◽  
Vol 17 (2) ◽  
pp. 1297-1311 ◽  
Author(s):  
Chaitri Roy ◽  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
D. C. Ayantika ◽  
Felix Ploeger ◽  
...  

Abstract. The Asian summer monsoon (ASM) anticyclone is the most pronounced circulation pattern in the upper troposphere and lower stratosphere (UTLS) during northern hemispheric summer. ASM convection plays an important role in efficient vertical transport from the surface to the upper-level anticyclone. In this paper we investigate the potential impact of enhanced anthropogenic nitrogen oxide (NOx) emissions on the distribution of ozone in the UTLS using the fully coupled aerosol–chemistry–climate model, ECHAM5-HAMMOZ. Ozone in the UTLS is influenced both by the convective uplift of ozone precursors and by the uplift of enhanced-NOx-induced tropospheric ozone anomalies. We performed anthropogenic NOx emission sensitivity experiments over India and China. In these simulations, covering the years 2000–2010, anthropogenic NOx emissions have been increased by 38 % over India and by 73 % over China with respect to the emission base year 2000. These emission increases are comparable to the observed linear trends of 3.8 % per year over India and 7.3 % per year over China during the period 2000 to 2010. Enhanced NOx emissions over India by 38 % and China by 73 % increase the ozone radiative forcing in the ASM anticyclone (15–40° N, 60–120° E) by 16.3 and 78.5 mW m−2 respectively. These elevated NOx emissions produce significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However, increase in NOx emissions over India by 73 % (similar to the observed increase over China) results in large ozone production over the Indo-Gangetic Plain and Tibetan Plateau. The higher ozone concentrations, in turn, induce a reversed monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppresses vertical transport of NOx and ozone into the ASM anticyclone.


2017 ◽  
Vol 17 (4) ◽  
pp. 3083-3095 ◽  
Author(s):  
Ruixiong Zhang ◽  
Yuhang Wang ◽  
Qiusheng He ◽  
Laiguo Chen ◽  
Yuzhong Zhang ◽  
...  

Abstract. Long-range transport followed by deposition of black carbon on glaciers of Tibet is one of the key issues of climate research as it induces changes on radiative forcing and subsequently impacting the melting of glaciers. The transport mechanism, however, is not well understood. In this study, we use short-lived reactive aromatics as proxies to diagnose transport of pollutants to Tibet. In situ observations of short-lived reactive aromatics across the Tibetan Plateau are analyzed using a regional chemistry and transport model. The model performance using the current emission inventories over the region is poor due to problems in the inventories and model transport. Top-down emissions constrained by satellite observations of glyoxal are a factor of 2–6 higher than the a priori emissions over the industrialized Indo-Gangetic Plain. Using the top-down emissions, agreement between model simulations and surface observations of aromatics improves. We find enhancements of reactive aromatics over Tibet by a factor of 6 on average due to rapid transport from India and nearby regions during the presence of a high-altitude cut-off low system. Our results suggest that the cut-off low system is a major pathway for long-range transport of pollutants such as black carbon. The modeling analysis reveals that even the state-of-the-science high-resolution reanalysis cannot simulate this cut-off low system accurately, which probably explains in part the underestimation of black carbon deposition over Tibet in previous modeling studies. Another model deficiency of underestimating pollution transport from the south is due to the complexity of terrain, leading to enhanced transport. It is therefore challenging for coarse-resolution global climate models to properly represent the effects of long-range transport of pollutants on the Tibetan environment and the subsequent consequence for regional climate forcing.


Author(s):  
William K. Lau ◽  
Kyu-Myong Kim

The impact of snow darkening by deposition of light absorbing aerosols (LAAs) on snow cover over the Himalaya-Tibetan-Plateau (HTP) and influence on the Asian monsoon are investigated using the NASA Goddard Earth Observing System Model Version 5 (GEOS-5). We find that during April-May-June, deposition of LAAs on snow leads to a reduction in surface albedo, initiating a sequence of feedback processes, starting with increased surface solar radiation, rapid snowmelt in HTP and warming of the surface and upper troposphere, followed by enhanced low-level southwesterlies and increased dust loading over the Himalayas-Indo-Gangetic Plain. The warming is amplified by increased dust aerosol heating, and subsequently amplified by latent heating from enhanced precipitation over the Himalaya foothills and northern India, via the Elevated Heat Pump (EHP) effect during June-July-August. The reduced snow cover in the HTP anchors the enhanced heating over the Tibetan Plateau and its southern slopes, in conjunction with an enhancement of the Tibetan Anticyclone, and the development of an anomalous Rossby wavetrain over East Asia, leading to weakening of the subtropical westerly jet, and northward displacement and intensification of the Mei-Yu rainbelt. Our results suggest that atmosphere-land heating by LAAs, particularly desert dust play a fundamental role in physical processes underpinning the snow-monsoon relationship proposed by Blandford more than a century ago.


2016 ◽  
Author(s):  
Ruixiong Zhang ◽  
Yuhang Wang ◽  
Qiusheng He ◽  
Laiguo Chen ◽  
Yuzhong Zhang ◽  
...  

Abstract. Long-range transport and subsequent deposition of black carbon on glaciers of Tibet is one of the key issues of climate research inducing changes on radiative forcing and subsequently impacting on the melting of glaciers. The transport mechanism, however, is not well understood. In this study, we use short-lived reactive aromatics as proxies to diagnose transport of pollutants to Tibet. In situ observations of short-lived reactive aromatics across the Tibetan Plateau are analyzed using a regional chemistry and transport model. The model performance using the current emission inventories over the region is poor due to problems in the inventories and model transport. Top-down emissions constrained by satellite observations of glyoxal (CHOCHO) are a factor of 2–6 higher than the a priori emissions over the industrialized Indo-Gangetic Plain. Using the top-down emissions, agreement between model simulations and surface observations of aromatics improves. We find enhancements of reactive aromatics over Tibet by a factor of 6 on average due to rapid transport from India and nearby regions during the presence of a high-altitude cut-off low system. Our results suggest that the cut-off low system is a major pathway for long-range transport of pollutants such as black carbon. The modeling analysis reveals that even the state-of-the-science high-resolution reanalysis cannot simulate this cut-off low system accurately, which probably explains in part the underestimation of black carbon deposition over Tibet in previous modeling studies. Furthermore, another model deficiency of underestimating pollution transport from the south is due to the complexity of terrain, leading to enhanced transport. It is therefore challenging for coarse-resolution global climate models to properly represent the effects of long-range transport of pollutants on the Tibetan environment and the subsequent consequence for regional climate forcing.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 438 ◽  
Author(s):  
William Lau ◽  
Kyu-Myong Kim

The impact of snow darkening by deposition of light-absorbing aerosols (LAAs) on snow cover over the Himalayas–Tibetan Plateau (HTP) and the influence on the Asian summer monsoon were investigated using the NASA Goddard Earth Observing System Model Version 5 (GEOS-5). The authors found that during April–May–June, the deposition of LAAs on snow led to a reduction in surface albedo, initiating a sequence of feedback processes, starting with increased net surface solar radiation, rapid snowmelt in the HTP and warming of the surface and upper troposphere, followed by enhanced low-level southwesterlies and increased dust loading over the Himalayas–Indo-Gangetic Plain. The warming was amplified by increased dust aerosol heating, and subsequently amplified by latent heating from enhanced precipitation over the Himalayan foothills and northern India, via the elevated heat pump (EHP) effect during June–July–August. The reduced snow cover in the HTP anchored the enhanced heating over the Tibetan Plateau and its southern slopes, in conjunction with an enhancement of the Tibetan Anticyclone, and the development of an anomalous Rossby wave train over East Asia, leading to a weakening of the subtropical westerly jet, and northward displacement and intensification of the Mei-Yu rain belt. The authors’ results suggest that the atmosphere-land heating induced by LAAs, particularly desert dust, plays a fundamental role in physical processes underpinning the snow–monsoon relationship proposed by Blanford more than a century ago.


Sign in / Sign up

Export Citation Format

Share Document