scholarly journals Effects of face masks on performance and cardiorespiratory response in well-trained athletes

Author(s):  
Florian Egger ◽  
Dominic Blumenauer ◽  
Patrick Fischer ◽  
Andreas Venhorst ◽  
Saarraaken Kulenthiran ◽  
...  

Abstract Background During the COVID-19 pandemic, compulsory masks became an integral part of outdoor sports such as jogging in crowded areas (e.g. city parks) as well as indoor sports in gyms and sports centers. This study, therefore, aimed to investigate the effects of medical face masks on performance and cardiorespiratory parameters in athletes. Methods In a randomized, cross-over design, 16 well-trained athletes (age 27 ± 7 years, peak oxygen consumption 56.2 ± 5.6 ml kg−1 min−1, maximum performance 5.1 ± 0.5 Watt kg−1) underwent three stepwise incremental exercise tests to exhaustion without mask (NM), with surgical mask (SM) and FFP2 mask (FFP2). Cardiorespiratory and metabolic responses were monitored by spiroergometry and blood lactate (BLa) testing throughout the tests. Results There was a large effect of masks on performance with a significant reduction of maximum performance with SM (355 ± 41 Watt) and FFP2 (364 ± 43 Watt) compared to NM (377 ± 40 Watt), respectively (p < 0.001; ηp2 = 0.50). A large interaction effect with a reduction of both oxygen consumption (p < 0.001; ηp2 = 0.34) and minute ventilation (p < 0.001; ηp2 = 0.39) was observed. At the termination of the test with SM 11 of 16 subjects reported acute dyspnea from the suction of the wet and deformed mask. No difference in performance was observed at the individual anaerobic threshold (p = 0.90). Conclusion Both SM and to a lesser extent FFP2 were associated with reduced maximum performance, minute ventilation, and oxygen consumption. For strenuous anaerobic exercise, an FFP2 mask may be preferred over an SM.

2015 ◽  
Vol 46 (3) ◽  
pp. 738-749 ◽  
Author(s):  
Luiza H. Degani-Costa ◽  
Barbara Levarge ◽  
Subba R. Digumarthy ◽  
Aaron S. Eisman ◽  
R. Scott Harris ◽  
...  

When overt pulmonary hypertension arises in interstitial lung disease (ILD), it contributes to exercise intolerance. We sought to determine the functional significance of abnormal pulmonary arterial pressure (PAP) responses to exercise in ILD.27 ILD patients and 11 age-matched controls underwent invasive cardiopulmonary exercise testing (iCPET). Mean PAP (mPAP) was indexed to cardiac output (Q´T) during exercise, with a mPAP–Q´Tslope ≥3 mmHg·min·L−1defined as an abnormal pulmonary vascular response.All control subjects had mPAP–Q´Tslopes <3 mmHg·min·L−1(mean±sem1.5±0.1 mmHg·min·L−1). 15 ILD patients had mPAP–Q´Tslopes ≥3 mmHg·min·L−1(4.1±0.2 mmHg·min·L−1) and were labelled as having ILD plus pulmonary vascular dysfunction (PVD). Subjects without pulmonary hypertension and with mPAP–Q´Tslopes <3 mmHg·min·L−1(1.9±0. 2 mmHg·min·L−1) were labelled as ILD minus PVD (n=12). ILD+PVD and ILD−PVD patients did not differ in terms of age, sex, body mass index, pulmonary function testing or degree of exercise oxygen desaturation. Peak oxygen consumption was lower in ILD+PVD than in ILD−PVD (13.0±0.9versus17±1.1 mL·kg−1·min−1, p=0.012) and controls (19.8±1.7 mL·kg−1·min−1, p=0.003). ILD+PVD patients had increased dead space volume (VD)/tidal volume (VT) and minute ventilation/carbon dioxide production at the anaerobic threshold.In ILD, mPAP–Q´Tslope ≥3 mmHg·min·L−1is associated with lower peak oxygen consumption, increasedVD/VTand inefficient ventilation. While noninvasive parameters were unable to predict those with abnormal pulmonary vascular responses to exercise, iCPET-derived mPAP–Q´Tslope may aid in identifying physiologically significant, early pulmonary vascular disease in ILD.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Christina Triantafillidou ◽  
Effrosyni Manali ◽  
Panagiotis Lyberopoulos ◽  
Likourgos Kolilekas ◽  
Konstantinos Kagouridis ◽  
...  

Background. In IPF, defects in lung mechanics and gas exchange manifest with exercise limitation due to dyspnea, the most prominent and disabling symptom.Aim. To evaluate the role of exercise testing through the 6MWT (6-minute walk test) and CPET (cardiopulmonary exercise testing) in the survival of patients with IPF.Methods. This is a prospective, observational study evaluating in 25 patients the relationship between exercise variables through both the 6MWT and CPET and survival.Results. By the end of the observational period 17 patients were alive (33% mortality). Observation ranged from 9 to 64 months. VE/VCO2slope (slope of relation between minute ventilation and CO2production), VO2peak/kg (peak oxygen consumption/kg), VE/VCO2ratio at anaerobic threshold, 6MWT distance, desaturation, and DLCO% were significant predictors of survival while VE/VCO2slope and VO2peak/kg had the strongest correlation with outcome. The optimal model for mortality risk estimation was VO2peak/kg + DLCO% combined. Furthermore, VE/VCO2slope and VO2peak/kg were correlated with distance and desaturation during the 6MWT.Conclusion. The integration of oxygen consumption and diffusing capacity proved to be a reliable predictor of survival because both variables reflect major underlying physiologic determinants of exercise limitation.


1999 ◽  
Vol 9 (4) ◽  
pp. 434-442 ◽  
Author(s):  
Samuel N. Cheuvront ◽  
Robert J. Moffatt ◽  
Kyle D. Biggerstaff ◽  
Shawn Bearden ◽  
Paul McDonough

Claims that ENDUROX™ enhances performance by altering metabolic responses to exercise were tested. In a double-blind crossover design, 10 male subjects were randomly assigned to consume 400 mg of placebo or 800 mg ENDUROX™ for 7 days. Cycle ergometry was performed for 30 minutes at 25%, followed by 10 min at 65% of peak oxygen consumption. After a 1-week washout period, subjects performed the identical exercise protocol following 7 days of reciprocal supplemental conditions. Expired gases were collected and analyzed continuously for oxygen consumption, minute ventilation, and respiratory exchange ratio. Heart rate, blood pressure, rating of perceived exertion, blood lactate, and serum glycerol data were also collected at regular intervals. A two-way ANOVA with repeated measures revealed no significant main or interaction effects involving group differences (p > 0.05) between trials for any variable during rest, 25% or 65% (VO2 peak), or recovery. Our findings do not support the ergogenic claims for ENDUROX™.


2008 ◽  
Vol 88 (10) ◽  
pp. 1188-1195 ◽  
Author(s):  
Sandra A Billinger ◽  
Benjamin Y Tseng ◽  
Patricia M Kluding

Background Assessment of peak oxygen consumption (V̇o2peak) using traditional modes of testing such as treadmill or cycle ergometer can be difficult in individuals with stroke due to balance deficits, gait impairments, or decreased coordination. Objective The purpose of this study was to quantitatively assess the validity and feasibility of a modified exercise test using a total-body recumbent stepper (mTBRS-XT) in individuals after stroke. Design A within-subject design, with a sample of convenience, was used. Participants Eleven participants (7 male, 4 female) with a mean of 40.1 months (SD=32.7) after stroke, a mean age of 60.9 years (SD=12.0), and mild to severe lower-extremity Fugl-Myer test scores (range=13–34) completed the study. Methods Participants performed 2 maximal-effort graded exercise tests on separate days using the mTBRS-XT and a cycle ergometer exercise protocol to assess cardiorespiratory fitness. Measurements of V̇o2peak and peak heart rate (peak HR) were obtained during both tests. Results A strong relationship existed between the mTBRS-XT and the cycle ergometer exercise test for V̇o2peak and peak HR (r=.91 and .89, respectively). Mean V̇o2peak was significantly higher for the mTBRS-XT (16.6 mL×kg−1×min−1[SD=4.5]) compared with the cycle ergometer exercise protocol (15.4 mL×kg−1×min−1 [SD=4.5]). All participants performed the mTBRS-XT. One individual with severe stroke was unable to pedal the cycle ergometer. No significant adverse events occurred. Conclusion The mTBRS-XT may be a safe, feasible, and valid exercise test to obtain measurements of V̇o2peak in people with stroke. Health care professionals may use the mTBRS-XT to prescribe aerobic exercise based on V̇o2peak values for individuals with mild to severe deficits after stroke.


2014 ◽  
Vol 39 (2) ◽  
pp. 168-172 ◽  
Author(s):  
Vernon Bond ◽  
Bryan H. Curry ◽  
Richard G. Adams ◽  
Richard M. Millis ◽  
Georges E. Haddad

The advent of medical nutrition therapy and nutritional physiology affords the opportunity to link diet to specific cardiovascular mechanisms, suggesting novel treatments for cardiovascular disease. This study tests the hypothesis that beetroot juice increases the plasma nitric oxide (NO) concentration, which is associated with improvements in cardiorespiratory function at rest and during submaximal aerobic exercise. The subjects were 12 healthy, young adult, normotensive African-American females, with a body mass of 61 ± 2 kg, body fat of 28% ± 4%, and peak oxygen consumption of 26 ± 3 mL·kg−1·min−1. The subjects were studied at rest and during cycle ergometer exercise at 40%, 60%, and 80% of peak oxygen consumption. Plasma NO concentration, respiratory quotient (RQ), minute ventilation, systolic and diastolic blood pressure (SBP and DBP), heart rate, and oxygen consumption were compared between isocaloric, isovolumetric placebo control orange juice and experimental beetroot juice treatments on separate days. The beetroot juice treatment increased plasma NO concentration and decreased oxygen consumption, SBP, and the heart rate-SBP product at rest and at 40%, 60%, and 80% of peak oxygen consumption in the absence of significant effects on RQ, minute ventilation, heart rate, and DBP. These findings suggest that, in healthy subjects, beetroot juice treatments increase plasma NO concentration and decrease cardiac afterload and myocardial oxygen demand at rest and during 3 submaximal levels of aerobic exercise. Future studies should determine the cellular and molecular mechanisms responsible for the improvement in cardiorespiratory function associated with dietary nitrate supplementation and whether they translate into better cardiovascular function and exercise tolerance in individuals with a compromised cardiovascular system.


2018 ◽  
Vol 43 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Thomas Edwards ◽  
Robert W. Motl ◽  
Lara A. Pilutti

Exercise training is one strategy for improving cardiorespiratory fitness (CRF) in multiple sclerosis (MS); however, few modalities are accessible for those with severe mobility impairment. Functional electrical stimulation (FES) cycling is an adapted exercise modality with the potential for improving CRF in people with severe MS. The objective of this study was to characterize the cardiorespiratory response of acute voluntary cycling with FES in people with MS with severe mobility impairment, and to compare this response to passive leg cycling. Eleven participants with MS that required assistance for ambulation completed a single bout of voluntary cycling with FES or passive leg cycling. Oxygen consumption, heart rate (HR), work rate (WR), and ratings of perceived exertion (RPE) were recorded throughout the session. For the FES group, mean exercising oxygen consumption was 8.7 ± 1.8 mL/(kg·min)−1, or 63.5% of peak oxygen consumption. Mean HR was 102 ± 9.7 bpm, approximately 76.4% of peak HR. Mean WR was 27.0 ± 9.2 W, or 57.3% of peak WR, and median RPE was 13.5 (interquartile range = 5.5). Active cycling with FES was significantly (p < 0.05) more intense than passive leg cycling based on oxygen consumption, HR, WR, and RPE during exercise. In conclusion, voluntary cycling with FES elicited an acute response that corresponded with moderate-to vigorous-intensity activity, suggesting that active cycling with FES can elicit a sufficient stimulus for improving CRF.


2019 ◽  
Vol 186 (8) ◽  
pp. 250-250 ◽  
Author(s):  
Persephone Greco-Otto ◽  
Stephanie Bond ◽  
Raymond Sides ◽  
Warwick Bayly ◽  
Renaud Leguillette

Equine water treadmills (WT) were initially designed for rehabilitation of musculoskeletal injuries, but are also commonly used for conditioning sport horses, however the effects are not well documented. The purpose of this study was to test the effect of an 18-day WT conditioning programme on peak oxygen consumption (V̇O2peak). Nine unfit Thoroughbreds were used in a randomised controlled trial. Six horses worked daily for 18 days in stifle-height water (WT group), while 3 control horses worked without water (dry treadmill group (DT)). Preconditioning and postconditioning maximal exercise racetrack tests (800 m) were performed using a portable ergospirometry system. Measured outcomes were V̇O2, tidal volume, minute ventilation, breathing frequency, heart rate, blood lactate and instantaneous and average speed. The workload as assessed by V̇O2 was 21.7 per cent of preconditioning V̇O2peak values for WT horses. V̇O2peak on the racetrack increased by 16.1 per cent from preconditioning to postconditioning in the WT horses (P=0.03), but did not change in the DT horses. Therefore, exercising horses in high water heights may improve conditioning.


2018 ◽  
Vol 13 (6) ◽  
pp. 687-693 ◽  
Author(s):  
Pitre C. Bourdon ◽  
Sarah M. Woolford ◽  
Jonathan D. Buckley

This study aimed to identify the minimum increment duration required to accurately assess 2 distinct lactate thresholds. A total of 21 elite rowers (12 women and 9 men) participated in this study, and each performed 8 or 9 rowing tests comprising 5 progressive incremental tests (3-, 4-, 5-, 7-, or 10-min steps) and at least three 30-min constant-intensity maximal lactate steady-state assessments. Power output (PO) at lactate threshold 1 was higher in the 3- and 4-min incremental tests. No other measures were different for lactate threshold 1. The PO at the second lactate threshold was different between most tests and was higher than the PO at maximal lactate steady state, except for the 10-min incremental test. Lactate threshold 2 oxygen consumption was higher in the 3-, 4-, and 5-min tests, but heart rate (HR) and rating of perceived exertion were not different between tests. Peak PO in the incremental tests was inversely related to the step durations (r2 = .86, P ≤ .02). Peak oxygen consumption was higher in the shorter (≤5 min) than the longer (≥7 min) incremental tests, whereas peak HR was not different between tests. These data suggest that for the methods used in this study, incremental exercise tests with step durations ≤7 min overestimate maximal lactate steady-state exercise intensity, peak physiological values are best determined using incremental tests with step durations ≤4 min, and HR measures are not affected by step duration, and therefore, prescription of training HRs can be made using any of these tests.


Sign in / Sign up

Export Citation Format

Share Document