Oxygen restriction as challenge test reveals early high-fat-diet-induced changes in glucose and lipid metabolism

2014 ◽  
Vol 467 (6) ◽  
pp. 1179-1193 ◽  
Author(s):  
Loes P. M. Duivenvoorde ◽  
Evert M. van Schothorst ◽  
Davina Derous ◽  
Inge van der Stelt ◽  
Jinit Masania ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4291
Author(s):  
Santina Chiechio ◽  
Magda Zammataro ◽  
Massimo Barresi ◽  
Margherita Amenta ◽  
Gabriele Ballistreri ◽  
...  

Citrus fruits are a rich source of high-value bioactive compounds and their consumption has been associated with beneficial effects on human health. Red (blood) oranges (Citrus sinensis L. Osbeck) are particularly rich in anthocyanins (95% of which are represented by cyanidin-3-glucoside and cyanidin-3-6″-malonyl-glucoside), flavanones (hesperidin, narirutin, and didymin), and hydroxycinnamic acids (caffeic acid, coumaric acid, sinapic, and ferulic acid). Lemon fruit (Citrus limon) is also rich in flavanones (eriocitrin, hesperidin, and diosmin) and other polyphenols. All of these compounds are believed to play a very important role as dietary antioxidants due to their ability to scavenge free radicals. A standardized powder extract, red orange and lemon extract (RLE), was obtained by properly mixing anthocyanins and other polyphenols recovered from red orange processing waste with eriocitrin and other flavanones recovered from lemon peel by a patented extraction process. RLE was used for in vivo assays aimed at testing a potential beneficial effect on glucose and lipid metabolism. In vivo experiments performed on male CD1 mice fed with a high-fat diet showed that an 8-week treatment with RLE was able to induce a significant reduction in glucose, cholesterol and triglycerides levels in the blood, with positive effects on regulation of hyperglycemia and lipid metabolism, thus suggesting a potential use of this new phytoextract for nutraceutical purposes.


2019 ◽  
Vol 10 (9) ◽  
pp. 5804-5815 ◽  
Author(s):  
Fenfen Yan ◽  
Na Li ◽  
Jialu Shi ◽  
Huizhen Li ◽  
Yingxue Yue ◽  
...  

Lactobacillus acidophilus alleviates type 2 diabetes induced by a high fat diet and streptozotocin (STZ) injection by regulating gut microbiota, hepatic glucose and lipid metabolism in mice.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1201
Author(s):  
Claudio Pirozzi ◽  
Adriano Lama ◽  
Chiara Annunziata ◽  
Gina Cavaliere ◽  
Clara Ruiz-Fernandez ◽  
...  

Lines of evidence have shown the embryogenic and transgenerational impact of bisphenol A (BPA), an endocrine-disrupting chemical, on immune-metabolic alterations, inflammation, and oxidative stress, while BPA toxic effects in adult obese mice are still overlooked. Here, we evaluate BPA’s worsening effect on several hepatic maladaptive processes associated to high-fat diet (HFD)-induced obesity in mice. After 12 weeks HFD feeding, C57Bl/6J male mice were exposed daily to BPA (50 μg/kg per os) along with HFD for 3 weeks. Glucose tolerance and lipid metabolism were examined in serum and/or liver. Hepatic oxidative damage (reactive oxygen species, malondialdehyde, antioxidant enzymes), and mitochondrial respiratory capacity were evaluated. Moreover, liver damage progression and inflammatory/immune response were determined by histological and molecular analysis. BPA amplified HFD-induced alteration of key factors involved in glucose and lipid metabolism, liver triglycerides accumulation, and worsened mitochondrial dysfunction by increasing oxidative stress and reducing antioxidant defense. The exacerbation by BPA of hepatic immune-metabolic dysfunction induced by HFD was shown by increased toll-like receptor-4 and its downstream pathways (i.e., NF-kB and NLRP3 inflammasome) amplifying inflammatory cytokine transcription and promoting fibrosis progression. This study evidences that BPA exposure represents an additional risk factor for the progression of fatty liver diseases strictly related to the cross-talk between oxidative stress and immune-metabolic impairment due to obesity.


Sign in / Sign up

Export Citation Format

Share Document