EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation

Planta ◽  
2011 ◽  
Vol 234 (5) ◽  
pp. 959-977 ◽  
Author(s):  
Hyunjung Jin ◽  
Jihye Do ◽  
Dahyun Moon ◽  
Eun Woon Noh ◽  
Wook Kim ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1002
Author(s):  
Shenquan Cao ◽  
Cong Wang ◽  
Huanhuan Ji ◽  
Mengjie Guo ◽  
Jiyao Cheng ◽  
...  

Secondary cell wall (SCW) deposition is an important process during wood formation. Although aspartic proteases (APs) have been reported to have regulatory roles in herbaceous plants, the involvement of atypical APs in SCW deposition in trees has not been reported. In this study, we characterised the Populus trichocarpa atypical AP gene PtAP66, which is involved in wood SCW deposition. Transcriptome data from the AspWood resource showed that in the secondary xylem of P. trichocarpa, PtAP66 transcripts increased from the vascular cambium to the xylem cell expansion region and maintained high levels in the SCW formation region. Fluorescent signals from transgenic Arabidopsis plant roots and transiently transformed P. trichocarpa leaf protoplasts strongly suggested that the PtAP66-fused fluorescent protein (PtAP66-GFP or PtAP66-YFP) localised in the plasma membrane. Compared with the wild-type plants, the Cas9/gRNA-induced PtAP66 mutants exhibited reduced SCW thickness of secondary xylem fibres, as suggested by the scanning electron microscopy (SEM) data. In addition, wood composition assays revealed that the cellulose content in the mutants decreased by 4.90–5.57%. Transcription analysis further showed that a loss of PtAP66 downregulated the expression of several SCW synthesis-related genes, including cellulose and hemicellulose synthesis enzyme-encoding genes. Altogether, these findings indicate that atypical PtAP66 plays an important role in SCW deposition during wood formation.


1998 ◽  
Vol 95 (16) ◽  
pp. 9693-9698 ◽  
Author(s):  
Isabel Allona ◽  
Michelle Quinn ◽  
Elizabeth Shoop ◽  
Kristi Swope ◽  
Sheila St. Cyr ◽  
...  

Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5′ ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.


2014 ◽  
Vol 101 ◽  
pp. 40-51 ◽  
Author(s):  
Hyunjung Jin ◽  
Jihye Do ◽  
Soo-Jeong Shin ◽  
Joon Weon Choi ◽  
Young Im Choi ◽  
...  

Holzforschung ◽  
2016 ◽  
Vol 70 (9) ◽  
pp. 801-810 ◽  
Author(s):  
Noritsugu Terashima ◽  
Chisato Ko ◽  
Yasuyuki Matsushita ◽  
Ulla Westermark

Abstract A large amount of monolignol glucosides (MLGs: p-glucocoumaryl alcohol, coniferin, syringin) are found in lignifying soft xylem near cambium and they disappear with the progress of lignification. Recently, it became a matter of debate whether those MLGs are real intermediates in lignin biosynthesis or only a storage form of monolignols outside of the main biosynthetic pathway. The latter is partly based on a misinterpretation of 14C-tracer experiments and partly on the simple generalization of the results of gene manipulation experiments concerning the flexible and complex lignification. In the present paper, it could be confirmed by the most reliable 13C-tracer method that MLGs are real intermediates in the pathway from l-phenylalanine to macromolecular lignin-polysaccharides complexes in the cell walls. This pathway via MLGs is essential for transport and programmed delivery of specific monolignols in a stable form from intracellular space to specific lignifying sites within the cell wall. The pool size of MLGs is large in most gymnosperm trees and some angiosperm species that emerged in an early stage of phylogeny, while the pool size is small in most angiosperms. This difference in pool size is reasonably understandable from the viewpoint of plant evolution, in the course of which the role of MLGs changed to meet variation in type of major cells, reaction wood formation, and postmortem lignification.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 451
Author(s):  
Chao Zhao ◽  
Youchao He ◽  
Ying Yu ◽  
Meiqi Zhou ◽  
Leifei Zhao ◽  
...  

Xylem development is a key process for wood formation in woody plants. To study the molecular regulatory mechanisms related to xylem development in hybrid poplar P. davidiana × P. bolleana, transcriptome analyses were conducted on developing xylem at six different growth stages within a single growing season. Xylem development and differentially expressed genes in the six time points were selected for a regulatory analysis. Xylem development was observed in stem sections at different growth stages, which showed that xylem development extended from the middle of April to early August and included cell expansion and secondary cell wall biosynthesis. An RNA-seq analysis of six samples with three replicates was performed. After transcriptome assembly and annotation, the differentially expressed genes (DEGs) were identified, and a Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and expression analysis of the DEGs were performed on each sample. On average, we obtained >20 million clean reads per sample, which were assembled into 84,733 nonredundant transcripts, of which there were 17,603 unigenes with lengths >1 kb. There were 14,890 genes that were differentially expressed among the six stages. The upregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S1 vs. S2 or S3 vs. S4 and, in GO terms, related to phytohormones in the S1 vs. S2 or S4 vs. S5 comparisons. The downregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S4 vs. S5 or S5 vs. S6 and, in GO terms, related to hormones between S1 vs. S2 or S2 vs. S3. The KEGG pathways in the DEGs related to “phenylpropanoid biosynthesis”, “plant hormone signal transduction” and “starch and sucrose metabolism” were significantly enriched among the different stages. The DEGs related to cell expansion, polysaccharide metabolism and synthesis, lignin synthesis, transcription factors and hormones were identified. The identification of genes involved in the regulation of xylem development will increase our understanding of the molecular regulation of wood formation in trees and, also, offers potential targets for genetic manipulation to improve the properties of wood.


2004 ◽  
Vol 155 (12) ◽  
pp. 523-527 ◽  
Author(s):  
Daniel Keunecke ◽  
Sebastian Baum

The tension wood of some deciduous trees is characterised by fibres that form an additional cell wall layer, the so-called «gelatinous layer» (g-layer). The chronology of g-layer formation in the process of cell wall differentiation and lignification was investigated using two-year old poplars (Populus tremula L.). For this purpose the pinning-method was applied. The results show that the g-layer formation probably takes place at an early stage of secondary wall formation.


2017 ◽  
Author(s):  
Judith Felten ◽  
Jorma Vahala ◽  
Jonathan Love ◽  
András Gorzsás ◽  
Markus Rüggeberg ◽  
...  

SummaryResearch conductedThe phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. Here we report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation.MethodsWe applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild type and ethylene insensitive hybrid aspen trees (Populus tremula x tremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild type and ethylene insensitive trees.Key resultsWe demonstrate that ACC and ethylene induce gelatinous-layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (ERFs, EIN3/EIL1) and wood formation.ConclusionG-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.


2009 ◽  
Vol 53 (4) ◽  
pp. 1701-1704 ◽  
Author(s):  
A. J. O'Neill ◽  
J. A. Lindsay ◽  
K. Gould ◽  
J. Hinds ◽  
I. Chopra

ABSTRACT To facilitate mode of action studies on antibacterial inhibitors of early-stage cell wall biosynthesis (CWB), we determined the transcriptional response of Staphylococcus aureus to depletion/inhibition of enzymes in this pathway by DNA microarray analysis. We identified a transcriptional signature distinct from that previously observed following exposure to inhibitors of late-stage CWB.


Sign in / Sign up

Export Citation Format

Share Document