Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient

Oecologia ◽  
2007 ◽  
Vol 153 (2) ◽  
pp. 375-384 ◽  
Author(s):  
Lars Ola Nilsson ◽  
Erland Bååth ◽  
Ursula Falkengren-Grerup ◽  
Håkan Wallander
2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Jacynthe Masse ◽  
Cindy E. Prescott ◽  
Sébastien Renaut ◽  
Yves Terrat ◽  
Sue J. Grayston

ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how vegetation, soil characteristics and microbial communities interact and drive soil functions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251501
Author(s):  
Wenjuan Yu ◽  
Huanhuan Gao ◽  
Hongzhang Kang

As an alternative for phospholipid fatty acid (PLFA) analysis, a simpler ester linked fatty acid (ELFA) analysis has been developed to characterize soil microbial communities. However, few studies have compared the two methods in forest soils where the contribution of nonmicrobial sources may be larger than that of microbial sources. Moreover, it remains unclear whether the two methods yield similar relationships of microbial biomass and composition with environmental variables. Here, we compared PLFA and ELFA methods with respect to microbial biomass and composition and their relationships with environmental variables in six oriental oak (Quercus variabilis) forest sites along a 1500-km latitudinal gradient in East China. We found that both methods had a low sample-to-sample variability and successfully separated overall community composition of sites. However, total, bacterial, and fungal biomass, the fungal-to-bacterial ratio, and the gram-positive to gram-negative bacteria ratio were not significantly or strongly correlated between the two methods. The relationships of these microbial properties with environmental variables (pH, precipitation, and clay) greatly differed between the two methods. Our study indicates that despite its simplicity, the ELFA method may not be as feasible as the PLFA method for investigating microbial biomass and composition and for identifying their dominant environmental drivers, at least in forest soils.


2017 ◽  
Vol 607-608 ◽  
pp. 1367-1375 ◽  
Author(s):  
Di Tian ◽  
Lai Jiang ◽  
Suhui Ma ◽  
Wenjing Fang ◽  
Bernhard Schmid ◽  
...  

2015 ◽  
Vol 95 (2) ◽  
pp. 77-86 ◽  
Author(s):  
S. A. Boczulak ◽  
B. J. Hawkins ◽  
D. G. Maynard ◽  
R. Roy

Boczulak, S. A., Hawkins, B. J., Maynard, D. G. and Roy, R. 2015. Long- and short-term temperature differences affect organic and inorganic nitrogen availability in forest soils. Can. J. Soil Sci. 95: 77–86. Soil microbial activity determines rates of decomposition and is strongly influenced by temperature. Soil microbial communities may be adapted to site characteristics, including temperature, through physiological modification of microbial populations or changes in species composition; however, response to short-term changes in temperature may also occur. We searched for evidence of short- and long-term temperature response of microbial communities involved in soil nitrogen (N) cycling by measuring the relative availability of organic and inorganic N forms in forest soils from a high and a low elevation site, incubated at 10, 16 and 20°C for 16 wk. By week 16, ammonium concentrations were greater in soils incubated at 16 and 20°C than at 10°C, and in soil from the low elevation site, compared with high elevation. Nitrate concentrations increased in soil from the low elevation site incubated at 16 and 20°C, but changed little in other treatments. Assessment of autotrophic nitrification potential showed gross nitrification in soil from the low elevation site was likely from classical chemolithotrophic nitrifiers. Organic N concentration increased over time in the 16 and 20°C incubations of soil from the low elevation site, but only increased in the 20°C treatment for soil from the high elevation site. Long-lasting site effects were indicated by the more active microbial community in soil from low elevation, which could be related to site temperature. Evidence of short-term temperature response of N cycling processes was observed in soils from both elevations.


2020 ◽  
Vol 76 (4) ◽  
pp. 97-105
Author(s):  
Olena Demyanyuk ◽  
Lyudmyla Symochko ◽  
Dmitry Shatsman

Soil microbial communities play an important role in ecosystems functioning and are on the field scale essential for plant nutrition and health. On a larger scale, they contribute to global element cycling. Furthermore, they are involved in the turnover processes of organic matter, the breakdown of xenobiotics and the formation of soil aggregates. An ecological state of soils depends on the structure and activity of soil microorganisms. The results of soil monitoring in various ecosystems in different climatic zones of Ukraine showed a clear trend for the correlation between the agroecological conditions and activity of microbiocenosis. The most significant influence of agricultural activity on the soil microbiota can be observed on the poorly soddy-podzolic and gray forest soils, where the crop cultivation without fertilization resulted in a decrease in the total count of microorganisms by 2.2-4.5 times. Application of agricultural measures aimed at achieving maximum productivity, specifically the combination of mineral, organic and biological fertilizers, contributes to an average 1.3-4.1 times increase in the total count of microorganisms in the soil, compared with non-fertilized variants. Soils with low content of organic matter and acidic medium, soddy-podzolic and gray forest soils were characterized by a high number of micromycetes, 136-185×103 CFU·g-1 soil, and a relatively low number of eutrophic and nitrogen-fixing microorganisms. The soil of natural ecosystems is characterized by a high total count of the microorganisms with a balanced structure of various ecological-trophic groups and balanced processes of mineralization-immobilization, organic matter decomposition, and humus accumulation.  


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 165
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Prolonged drought results in serious ecological consequences in forest ecosystems, particularly for soil microbial communities. However, much is unknown about soil microbial communities in their response to long-term consecutive droughts in warm-temperate forests. Here, we conducted a 7-year manipulated throughfall reduction experiment (TFR) to examine the responses of bacterial and fungal communities in terms of richness and networks. Our results show that long-term TFR reduced bacterial, but not fungal, richness, with rare bacterial taxa being more sensitive to TFR than dominant taxa. The bacterial network under the TFR treatment featured a simpler network structure and fewer competitive links compared to the control, implying weakened interactions among bacterial species. Bacterial genes involved in xenobiotic biodegradation and metabolism, and lignin-degrading enzymes were enhanced under TFR treatment, which may be attributed to TFR-induced increases in fine root biomass and turnover. Our results indicate that soil bacterial communities are more responsive than fungi to long-term TFR in a warm-temperate oak forest, leading to potential consequences such as the degradation of recalcitrant organics in soil.


Sign in / Sign up

Export Citation Format

Share Document