The influence of ambient ultraviolet light on sperm quality and sexual ornamentation in three-spined sticklebacks (Gasterosteus aculeatus)

Oecologia ◽  
2013 ◽  
Vol 174 (2) ◽  
pp. 393-402 ◽  
Author(s):  
Ingolf P. Rick ◽  
Marion Mehlis ◽  
Elisabeth Eßer ◽  
Theo C. M. Bakker
2015 ◽  
Vol 282 (1817) ◽  
pp. 20151279 ◽  
Author(s):  
Marion Mehlis ◽  
Ingolf P. Rick ◽  
Theo C. M. Bakker

In polyandrous mating systems, male reproductive success depends on both mate-acquisition traits (precopulatory) and sperm competitive abilities (postcopulatory). Empirical data on the interaction between these traits are inconsistent; revealing positive, negative or no relationships. It is generally expected that the investment in pre- and postcopulatory traits is mediated by environmental conditions. To test how dietary resource availability affects sexual ornamentation, sperm quality and their interrelationship in three-spined sticklebacks ( Gasterosteus aculeatus ), full-sibling groups were raised under three conditions differing in food quantity and/or quality (i.e. carotenoid content): (i) high-quantity/high-quality, (ii) high-quantity/low-quality or (iii) low-quantity/low-quality. After 1 year of feeding, food-restricted males developed a more intense breeding coloration and faster sperm compared with their well-fed brothers, indicating that they allocated relatively more in pre- and postcopulatory traits. Moreover, they outcompeted their well-fed, carotenoid-supplemented brothers in sperm competition trials with equal numbers of competing sperm, suggesting that food-restricted males maximize their present reproductive success. This may result in reduced future reproductive opportunities as food-restricted males suffered from a higher mortality, had an overall reduced body size, and sperm number available for fertilization. In accordance with theory, a trade-off between the investment in pre- and postcopulatory traits was observed in food-restricted males, whereas well-fed males were able to allocate to both traits resulting in a significantly positive relationship.


2013 ◽  
Vol 59 (6) ◽  
pp. 761-768 ◽  
Author(s):  
Marion Mehlis ◽  
Lukas K. Hilke ◽  
Theo C. M. Bakker

Abstract Recent studies have revealed that sexually selected traits may signal sperm quality and hence male fertilisation ability. There is also evidence that the expression of male sexual ornamentation and associated sperm characteristics depend on an individual’s ability to cope with oxidative stress. Carotenoids are known for their antioxidant properties and carotenoid-based ornaments might represent honest signals as these pigments can be traded off between the investment in sexual ornamentation, sperm function as well as immune response. In this study, we examined the relationship between sexual ornamentation (breeding coloration) and sperm characteristics (e.g., velocity and morphology) in the three-spined stickleback Gasterosteus aculeatus, an externally fertilising fish species, in which sperm competition commonly occurs. During the breeding season males are sperm limited and develop a conspicuous carotenoid-based coloration, which is under strong pre-copulatory sexual selection due to female mate choice and male-male competition. The results of the present study show that the expression of stickleback male breeding coloration is significantly positively associated with the linearity of sperm movement, whereas sperm morphology (head length to tail length ratio) is significantly negatively related to the trajectory of sperm movement. Moreover, there is some support for the phenotype-linked fertility hypothesis as the intensity of male red breeding coloration is significantly positively correlated with sperm velocity, which is supposed to be an important determinant of fertilisation success in external fertilisers, indicating the honesty of the sexually selected nuptial red coloration.


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


1973 ◽  
Vol 107 (5) ◽  
pp. 716-716 ◽  
Author(s):  
V. H. Witten
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document