scholarly journals Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm

Author(s):  
Debabrata Dansana ◽  
Raghvendra Kumar ◽  
Aishik Bhattacharjee ◽  
D. Jude Hemanth ◽  
Deepak Gupta ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


2020 ◽  
Vol 498 (4) ◽  
pp. 5620-5628
Author(s):  
Y Su ◽  
Y Zhang ◽  
G Liang ◽  
J A ZuHone ◽  
D J Barnes ◽  
...  

ABSTRACT The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non-cool core (NCC) clusters of galaxies that are defined by their central cooling times. We employ a convolutional neural network, ResNet-18, which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for a sample of 318 massive clusters drawn from the IllustrisTNG simulations. The network is trained and tested with low-resolution mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92 per cent, 81 per cent, and 83 per cent, respectively. The performance is superior to classification by conventional methods using central gas densities, with an average ${\rm BAcc}=81{{\ \rm per\ cent}}$, or surface brightness concentrations, giving ${\rm BAcc}=73{{\ \rm per\ cent}}$. We use class activation mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the network has utilized regions from cluster centres out to r ≈ 300 kpc and r ≈ 500 kpc to identify CC and NCC clusters, respectively. It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.


2020 ◽  
Vol 10 (4) ◽  
pp. 213 ◽  
Author(s):  
Ki-Sun Lee ◽  
Jae Young Kim ◽  
Eun-tae Jeon ◽  
Won Suk Choi ◽  
Nan Hee Kim ◽  
...  

According to recent studies, patients with COVID-19 have different feature characteristics on chest X-ray (CXR) than those with other lung diseases. This study aimed at evaluating the layer depths and degree of fine-tuning on transfer learning with a deep convolutional neural network (CNN)-based COVID-19 screening in CXR to identify efficient transfer learning strategies. The CXR images used in this study were collected from publicly available repositories, and the collected images were classified into three classes: COVID-19, pneumonia, and normal. To evaluate the effect of layer depths of the same CNN architecture, CNNs called VGG-16 and VGG-19 were used as backbone networks. Then, each backbone network was trained with different degrees of fine-tuning and comparatively evaluated. The experimental results showed the highest AUC value to be 0.950 concerning COVID-19 classification in the experimental group of a fine-tuned with only 2/5 blocks of the VGG16 backbone network. In conclusion, in the classification of medical images with a limited number of data, a deeper layer depth may not guarantee better results. In addition, even if the same pre-trained CNN architecture is used, an appropriate degree of fine-tuning can help to build an efficient deep learning model.


2021 ◽  
Author(s):  
Tirupathi Karthik ◽  
Vijayalakshmi Kasiraman ◽  
Bhavani Paski ◽  
Kashyap Gurram ◽  
Amit Talwar ◽  
...  

Background and aims: Chest X-rays are widely used, non-invasive, cost effective imaging tests. However, the complexity of interpretation and global shortage of radiologists have led to reporting backlogs, delayed diagnosis and a compromised quality of care. A fully automated, reliable artificial intelligence system that can quickly triage abnormal images for urgent radiologist review would be invaluable in the clinical setting. The aim was to develop and validate a deep learning Convoluted Neural Network algorithm to automate the detection of 13 common abnormalities found on Chest X-rays. Method: In this retrospective study, a VGG 16 deep learning model was trained on images from the Chest-ray 14, a large publicly available Chest X-ray dataset, containing over 112,120 images with annotations. Images were split into training, validation and testing sets and trained to identify 13 specific abnormalities. The primary performance measures were accuracy and precision. Results: The model demonstrated an overall accuracy of 88% in the identification of abnormal X-rays and 87% in the detection of 13 common chest conditions with no model bias. Conclusion: This study demonstrates that a well-trained deep learning algorithm can accurately identify multiple abnormalities on X-ray images. As such models get further refined, they can be used to ease radiology workflow bottlenecks and improve reporting efficiency. Napier Healthcare’s team that developed this model consists of medical IT professionals who specialize in AI and its practical application in acute & long-term care settings. This is currently being piloted in a few hospitals and diagnostic labs on a commercial basis.


Author(s):  
Muntasir Al-Asfoor

Abstract During the times of pandemics, faster diagnosis plays a key role in the response efforts to contain the disease as well as reducing its spread. Computer-aided detection would save time and increase the quality of diagnosis in comparison with manual human diagnosis. Artificial Intelligence (AI) through deep learning is considered as a reliable method to design such systems. In this research paper, an AI based diagnosis approach has been suggested to tackle the COVID-19 pandemic. The proposed system employs a deep learning algorithm on chest x-ray images to detect the infected subjects. An enhanced Convolutional Neural Network (CNN) architecture has been designed with 22 layers which is then trained over a chest x-ray dataset. More after, a classification component has been introduced to classify the x-ray images into two categories (Covid-19 and not Covid-19) of infection. The system has been evaluated through a series of observations and experimentation. The experimental results have shown a promising performance in terms of accuracy. The system has diagnosed Covid-19 with accuracy of 95.7% and normal subjects with accuracy of 93.1 while it showed 96.7 accuracy on Pneumonia.


2021 ◽  
Author(s):  
Donghwan Yun ◽  
Semin Cho ◽  
Yong Chul Kim ◽  
Dong Ki Kim ◽  
Kook-Hwan Oh ◽  
...  

BACKGROUND Precise prediction of contrast media-induced acute kidney injury (CIAKI) is an important issue because of its relationship with worse outcomes. OBJECTIVE Herein, we examined whether a deep learning algorithm could predict the risk of intravenous CIAKI better than other machine learning and logistic regression models in patients undergoing computed tomography. METHODS A total of 14,185 cases that underwent intravenous contrast media for computed tomography under the preventive and monitoring facility in Seoul National University Hospital were reviewed. CIAKI was defined as an increase in serum creatinine ≥0.3 mg/dl within 2 days and/or ≥50% within 7 days. Using both time-varying and time-invariant features, machine learning models, such as the recurrent neural network (RNN), light gradient boosting machine, extreme boosting machine, random forest, decision tree, support vector machine, κ-nearest neighboring, and logistic regression, were developed using a training set, and their performance was compared using the area under the receiver operating characteristic curve (AUROC) in a test set. RESULTS CIAKI developed in 261 cases (1.8%). The RNN model had the highest AUROC value of 0.755 (0.708–0.802) for predicting CIAKI, which was superior to those obtained from other machine learning models. Although CIAKI was defined as an increase in serum creatinine ≥0.5 mg/dl and/or ≥25% within 3 days, the highest performance was achieved in the RNN model with an AUROC of 0.716 (0.664–0.768). In the feature ranking analysis, albumin level was the most highly contributing factor to RNN performance, followed by time-varying kidney function. CONCLUSIONS Application of a deep learning algorithm improves the predictability of intravenous CIAKI after computed tomography, representing a basis for future clinical alarming and preventive systems.


Sign in / Sign up

Export Citation Format

Share Document