scholarly journals Multi-marginal entropy-transport with repulsive cost

Author(s):  
Augusto Gerolin ◽  
Anna Kausamo ◽  
Tapio Rajala
Keyword(s):  
2004 ◽  
Vol 126 (6) ◽  
pp. 893-899 ◽  
Author(s):  
O. B. Adeyinka ◽  
G. F. Naterer

This article presents new modeling of turbulence correlations in the entropy transport equation for viscous, incompressible flows. An explicit entropy equation of state is developed for gases with the ideal gas law, while entropy transport equations are derived for both gases and liquids. The formulation specifically considers incompressible forced convection problems without a buoyancy term in the y-momentum equation, as density variations are neglected. Reynolds averaging techniques are applied to the turbulence closure of fluctuating temperature and entropy fields. The problem of rigorously expressing the mean entropy production in terms of other mean flow quantities is addressed. The validity of the newly developed formulation is assessed using direct numerical simulation data and empirical relations for the friction factor. Also, the dissipation (ε) of turbulent kinetic energy is formulated in terms of the Second Law. In contrast to the conventional ε equation modeling, this article proposes an alternative method by utilizing both transport and positive definite forms of the entropy production equation.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Mehdi Safari ◽  
M. Reza H. Sheikhi

Local entropy generation in a turbulent nonpremixed jet flame (Sandia Flame D) is predicted using large eddy simulation (LES) with inclusion of entropy transport. The filtered form of entropy transport equation contains several unclosed source terms which represent irreversibilities due to viscous dissipation, heat conduction, mass diffusion, and chemical reaction. The subgrid scale (SGS) closure is accounted for by the entropy filtered density function (En-FDF) methodology to include complete statistical information about SGS variation of scalars and entropy. The En-FDF provides closed forms for the chemical reaction effects. The methodology is applied for LES of Sandia Flame D and predictions are validated against experimental data. Entropy statistics are shown to compare favorably with the data. All individual irreversible processes in this flame are predicted and analyzed. It is shown that heat conduction and chemical reaction are the main sources of entropy generation in this flame.


Entropy ◽  
2010 ◽  
Vol 12 (3) ◽  
pp. 434-444 ◽  
Author(s):  
Mehdi Safari ◽  
M. Reza H. Sheikhi ◽  
Mohammad Janbozorgi ◽  
Hameed Metghalchi

2010 ◽  
Vol 23 (11) ◽  
pp. 3077-3093 ◽  
Author(s):  
Olivier Pauluis ◽  
Arnaud Czaja ◽  
Robert Korty

Abstract Differential heating of the earth’s atmosphere drives a global circulation that transports energy from the tropical regions to higher latitudes. Because of the turbulent nature of the flow, any description of a “mean circulation” or “mean parcel trajectories” is tied to the specific averaging method and coordinate system. In this paper, the NCEP–NCAR reanalysis data spanning 1970–2004 are used to compare the mean circulation obtained by averaging the flow on surfaces of constant liquid water potential temperature, or dry isentropes, and on surfaces of constant equivalent potential temperature, or moist isentropes. While the two circulations are qualitatively similar, they differ in intensity. In the tropics, the total mass transport on dry isentropes is larger than the circulation on moist isentropes. In contrast, in midlatitudes, the total mass transport on moist isentropes is between 1.5 and 3 times larger than the mass transport on dry isentropes. It is shown here that the differences between the two circulations can be explained by the atmospheric transport of water vapor. In particular, the enhanced mass transport on moist isentropes corresponds to a poleward flow of warm moist air near the earth’s surface in midlatitudes. This low-level poleward flow does not appear in the zonally averaged circulation on dry isentropes, as it is hidden by the presence of a larger equatorward flow of drier air at same potential temperature. However, as the equivalent potential temperature in this low-level poleward flow is close to the potential temperature of the air near the tropopause, it is included in the total circulation on moist isentropes. In the tropics, the situation is reversed: the Hadley circulation transports warm moist air toward the equator, and in the opposite direction to the flow at upper levels, and the circulation on dry isentropes is larger than that on moist isentropes. The relationship between circulation and entropy transport is also analyzed. A gross stratification is defined as the ratio of the entropy transport to the net transport on isentropic surfaces. It is found that in midlatitudes the gross stability for moist entropy is approximately the same as that for dry entropy. The gross stratification in the midlatitude circulation differs from what one would expect for either an overturning circulation or horizontal mixing; rather, it confirms that warm moist subtropical air ascends into the upper troposphere within the storm tracks.


2009 ◽  
Vol 66 (1) ◽  
pp. 148-158 ◽  
Author(s):  
George H. Bryan ◽  
Richard Rotunno

Abstract Using a time-dependent axisymmetric numerical model, the authors evaluate whether high-entropy air near the surface in hurricane eyes can substantially increase hurricanes’ maximum intensity. This local high-entropy anomaly is ultimately created by surface entropy fluxes in the eye. Therefore, simulations are conducted in which these surface fluxes are set to zero; results show that the high-entropy anomaly is eliminated, yet the axisymmetric tangential wind speed is only slightly weakened (by ∼4%, on average). These results contradict the hypothesis that transport of high-entropy air from the eye into the eyewall can significantly increase the maximum axisymmetric intensity of hurricanes. In fact, all simulations (with or without high-entropy anomalies) have an intensity that is 25–30 m s−1 higher than Emanuel’s theoretical maximum intensity. Further analysis demonstrates that less then 3% of the total surface-entropy input to the hurricane comes from the eye, and therefore the total magnitude of entropy transport between the eye and eyewall is a negligible component of the entropy budget of the simulated hurricanes. This latter finding is consistent with a cursory comparison with observations.


1966 ◽  
Vol 16 (6) ◽  
pp. 258-258 ◽  
Author(s):  
Kazumi Maki ◽  
Allan Griffin

Sign in / Sign up

Export Citation Format

Share Document