Late Cretaceous to early Miocene deposits of the Carpathian foreland basin in southern Moravia

1999 ◽  
Vol 88 (3) ◽  
pp. 475-495 ◽  
Author(s):  
F. J. Picha ◽  
Z. Stranik
Author(s):  
Chi-Cheng He ◽  
Yue-Qiao Zhang ◽  
Shao-Kai Li ◽  
Kai Wang ◽  
Jian-Qing Ji

Cretaceous-Cenozoic basins developed in the NE Tibetan Plateau contain key archives to unravel the growth history of the plateau in response to the India-Eurasia collision. Here we present magnetostratigraphic results of a Late Cretaceous to Paleogene succession of the Zhongba section outcropping at the southern margin of the eastern Xining basin. This succession consists of three lithological units punctuated by two stratigraphic unconformities, which best recorded the deformation history of this foreland basin. Detailed magnetostratigraphic investigation show that the lower terrestrial sedimentary rock unit, the Minhe Group, was deposited in latest Cretaceous in the time span of ca. 74.5−69.2 Ma; the middle unit was deposited in Paleogene in the time span of ca. 49.3−22 Ma; and the upper conglomeratic unit, not dated, possibly was deposited in early Miocene. Accordingly, the Cretaceous−Paleogene unconformity, widely observed in the foreland basins of NE Tibet, represents a sedimentary hiatus duration of ∼19.9 m.y., from ca. 69.2 Ma to ca. 49.3 Ma, which possibly recorded the far-field response to the tectonic transition from Neo-Tethys oceanic plate subduction to the India-Eurasia collision in southern Tibet. Changes in provenance, sedimentary accumulation rate, and mean susceptibility value at ca. 33−30 Ma, and the total prolate anisotropy of magnetic susceptibility (AMS) ellipsoids and provenance shifting since ca. 23−19 Ma, point to the pulsed growth of West Qinling, and rapid uplift of Laji Shan, respectively, indicating an enhanced effect of the India-Eurasia collision in Oligocene and early Miocene. AMS results show a clockwise rotation of the shortening direction from NEN-SWS in latest Cretaceous to NE-SW in Paleogene.


2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.


Author(s):  
Clara Guatame ◽  
Marco Rincón

AbstractThe Piedemonte Llanero Basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque formation, Palmichal group, Arcillas del Limbo formation, and San Fernando formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque formation) to subbituminous C (San Fernando formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite. Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene–Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque formation evolving to the lacustrine conditions in the San Fernando formation.


2022 ◽  
Author(s):  
Glenn R. Sharman ◽  
Daniel F. Stockli ◽  
Peter Flaig ◽  
Robert G. Raynolds ◽  
Marieke Dechesne ◽  
...  

ABSTRACT Detrital zircon U-Pb and (U-Th)/He ages from latest Cretaceous–Eocene strata of the Denver Basin provide novel insights into evolving sediment sourcing, recycling, and dispersal patterns during deposition in an intracontinental foreland basin. In total, 2464 U-Pb and 78 (U-Th)/He analyses of detrital zircons from 21 sandstone samples are presented from outcrop and drill core in the proximal and distal portions of the Denver Basin. Upper Cretaceous samples that predate uplift of the southern Front Range during the Laramide orogeny (Pierre Shale, Fox Hills Sandstone, and Laramie Formation) contain prominent Late Cretaceous (84–77 Ma), Jurassic (169–163 Ma), and Proterozoic (1.69–1.68 Ga) U-Pb ages, along with less abundant Paleozoic through Archean zircon grain ages. These grain ages are consistent with sources in the western U.S. Cordillera, including the Mesozoic Cordilleran magmatic arc and Yavapai-Mazatzal basement, with lesser contributions of Grenville and Appalachian zircon recycled from older sedimentary sequences. Mesozoic zircon (U-Th)/He ages confirm Cordilleran sources and/or recycling from the Sevier orogenic hinterland. Five of the 11 samples from syn-Laramide basin fill (latest Cretaceous–Paleocene D1 Sequence) and all five samples from the overlying Eocene D2 Sequence are dominated by 1.1–1.05 Ga zircon ages that are interpreted to reflect local derivation from the ca. 1.1 Ga Pikes Peak batholith. Corresponding late Mesoproterozoic to early Neoproterozoic zircon (U-Th)/He ages are consistent with local sourcing from the southern Front Range that underwent limited Mesozoic–Cenozoic unroofing. The other six samples from the D1 Sequence yielded detrital zircon U-Pb ages similar to pre-Laramide units, with major U-Pb age peaks at ca. 1.7 and 1.4 Ga but lacking the 1.1 Ga age peak found in the other syn-Laramide samples. One of these samples yielded abundant Mesozoic and Paleozoic (U-Th)/He ages, including prominent Early and Late Cretaceous peaks. We propose that fill of the Denver Basin represents the interplay between locally derived sediment delivered by transverse drainages that emanated from the southern Front Range and a previously unrecognized, possibly extraregional, axial-fluvial system. Transverse alluvial-fluvial fans, preserved in proximal basin fill, record progressive unroofing of southern Front Range basement during D1 and D2 Sequence deposition. Deposits of the upper and lower D1 Sequence across the basin were derived from these fans that emanated from the southern Front Range. However, the finer-grained, middle portion of the D1 Sequence that spans the Cretaceous-Paleogene boundary was deposited by both transverse (proximal basin fill) and axial (distal basin fill) fluvial systems that exhibit contrasting provenance signatures. Although both tectonic and climatic controls likely influenced the stratigraphic development of the Denver Basin, the migration of locally derived fans toward and then away from the thrust front suggests that uplift of the southern Front Range may have peaked at approximately the Cretaceous-Paleogene boundary.


1994 ◽  
Vol 34 ◽  
pp. 1-23
Author(s):  
Ole Valdemar Vejbæk ◽  
Svend Stouge ◽  
Kurt Damtoft Poulsen

The present distribution of Palaeozoic sediments in the Bornholm area is a consequence of several different tectonic regimes during the Phanerozoic eon. This development may be divided into three main evolutionary phases: A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei-Tornquist zone came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of the area is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast. A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei - Tornquist zane came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of thearea is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast.


2021 ◽  
Author(s):  
Anas Abbassi ◽  
Paola Cipollari ◽  
Maria Giuditta Fellin ◽  
Mohamed Najib Zaghloul ◽  
Marcel Guillong ◽  
...  

<p>During the Tertiary evolution of the Western Mediterranean subduction system, the orogenic accretion at the Maghrebian margin let the stacking of three main tectonic zones of the Rif fold-and-thrust belt: 1) the Internal Zone; 2) the “Maghrebian Flysch” Nappes; and 3) the  External Zone. In this context, a migrating foreland basin system developed between the Maghrebian orogenic belt and the adjacent African Craton. </p><p>A comprehensive reconstruction of the foreland basin system of the Rif Chain for each phase of its accretional history is still missing. In this work, by integrating field observations with quantitative biostratigraphic data from calcareous nannofossils assemblages, sandstone composition, and detrital zircon U-Pb geochronology from selected stratigraphic successions, we reconstruct the foreland basin system that in the early Miocene developed in front of the growing Rif orogen. The analyzed successions are representative of (1) the “Beliounis Facies”, made of quartz-arenites and litharenites (Numidian-like “mixed succession”), from the Predorsalian Unit; (2) the “Mérinides Facies”, made of a Numidian-like “mixed succession”, from the “Maghrebian Flysch Basin”; and (3) the classical “Numidian Facies”, exclusively made of quartzarenites, from the Intrarifian Tanger Unit.</p><p>The petrographic analyses and the detrital zircon U-Pb ages show the provenance of the quartzarenites of the “Numidian Facies” from the African Craton, whereas the sublitharenites and feldspathic litharenites, of both the “Mérinides Facies” and “Beliounis Facies”, show provenance from a cratonic area and the growing and unroofing Rif Chain, respectively. </p><p>The Alpine signature of the detrital grains sedimented into the foredeep deposits of the early Miocene orogenic system of the Rif Chain is from the feldspathic litharenites of both the Mérinides Facies and the Beni Ider Flysch. Both show Mesozoic and Cenozoic U-Pb zircon populations, with a large population of zircons centered at ca. 32 Ma. The U and Th concentration, the Th/U ratio, and the REE pattern of this population of zircons suggest a possible source area from Oligocene doleritic rock intrusions, similar to the magmatic dyke swarms (diorite) cropping out in the Malaga region ( SE Spain).</p><p>The biostratigraphic analyses pinpoint the same age for the arrival of the quartz grains in the Numidian, Mérinides, and Beliounis deposits, indicating about 1 Myr for their sedimentation (ca. 20-19 Ma, early Burdigalian). Together with field evidence, the biostratigraphic results point to an autochthonous deposition of the Numidian Sandstones on top of the Tanger Unit, allowing to delineate the early Burdigalian foreland basin system of the Rif Chain. The foreland depozone involved the Tanger Unit and received the “Numidian Facies” deposits ; the foredeep depozone hosted about 2000 m of the “Mérinides Facies” and the Beni Ider Flysch, and developed on the so-called “Flysch Basin Domain”; and, finally, the wedge-top depozone, characterized by the “Beliounis Facies”, developed on top of the Predorsalian Unit.</p><p>The Numidian Sandstones and the Numidian-like deposits analyzed in Morocco show the same age of similar deposits from Algeria, Tunisia, and Sicily, suggesting a comparable early Burdigalian tectono-sedimentary evolution along the southern branch of the Western Mediterranean subduction-related orogen.</p>


2021 ◽  
pp. M57-2021-29
Author(s):  
A.K. Khudoley ◽  
S.V. Frolov ◽  
G.G. Akhmanov ◽  
E.A. Bakay ◽  
S.S. Drachev ◽  
...  

AbstractAnabar-Lena Composite Tectono-Sedimentary Element (AL CTSE) is located in the northern East Siberia extending for c. 700 km along the Laptev Sea coast between the Khatanga Bay and Lena River delta. AL CTSE consists of rocks from Mesoproterozoic to Late Cretaceous in age with total thickness reaching 14 km. It evolved through the following tectonic settings: (1) Meso-Early Neoproterozoic intracratonic basin, (2) Ediacaran - Early Devonian passive margin, (3) Middle Devonian - Early Carboniferous rift, (4) late Early Carboniferous - latest Jurassic passive margin, (5) Permian foreland basin, (6) Triassic to Jurassic continental platform basin and (7) latest Jurassic - earliest Late Cretaceous foreland basin. Proterozoic and lower-middle Paleozoic successions are composed mainly by carbonate rocks while siliciclastic rocks dominate upper Paleozoic and Mesozoic sections. Several petroleum systems are assumed in the AL CTSE. Permian source rocks and Triassic sandstone reservoirs are the most important play elements. Presence of several mature source rock units and abundant oil- and gas-shows (both in wells and in outcrops), including a giant Olenek Bitumen Field, suggest that further exploration in this area may result in economic discoveries.


2020 ◽  
pp. 1-115
Author(s):  
Luis Pachón-Parra ◽  
Paul Mann ◽  
Nestor Cardozo

The Putumayo foreland basin (PFB) is an underexplored, hydrocarbon-bearing basin located in southernmost Colombia. The PFB forms a 250-km long segment of the 7000-km-long corridor of Late Cretaceous-Cenozoic foreland basins produced by eastward thrusting of the Andean mountain chain over Precambrian rocks of the South American craton. We use ∼4000 km of 2D seismic data tied to 28 exploratory wells to describe the basin-wide structure and stratigraphy of an underexplored hydrocarbon basin. Based on seismic interpretation and comparison with published works from the southward continuation of the PFB into Peru and Ecuador, three main across-strike, structural zones include: 1) the 20-km-wide, Western structural zone closest to the Andean mountain front characterized by inversion of older, Jurassic half-grabens during the late Miocene; 2) the 45-km-wide, Central structural zone characterized by moderately-inverted Jurassic half-grabens; and 3) the 120-km-wide, Eastern structural zone characterized by the 40-km-wide, N-S trending Caquetá arch. The five mainly clastic tectonosequences of the PFB include: 1) Lower Cretaceous pre-foreland basin deposits; 2) Upper Cretaceous-Paleocene foreland basin deposits; 3) Eocene foreland basin deposits related to the early uplift of the Eastern Cordillera; 4) Oligocene-Miocene underfilled, foreland basin deposits; and 5) Plio-Pleistocene overfilled, foreland basin deposits. We used 3D flexural modeling to identify the elastic thickness (Te) of the lithosphere below the PFB, in order to model the location of the sedimentary-related and tectonically-related forebulges of Cretaceous to Oligocene age. Flexural analysis shows two pulses of rapid, foreland-related subsidence first during the Late Cretaceous-early Paleocene and later during the Oligocene-Miocene. Despite the present-day oblique thrusting of the mountain front, flexure of the PFB basement has produced a tectonic forebulge now located in the Eastern structural zone and controls a basement high that forms the eastern, updip limit for most hydrocarbons found in the PFB.


Sign in / Sign up

Export Citation Format

Share Document