CRRES/Ground-based multi-instrument observations of an interval of substorm activity

1994 ◽  
Vol 12 (12) ◽  
pp. 1158-1173 ◽  
Author(s):  
T. K. Yeoman ◽  
H. Lühr ◽  
R. W. H. Friedel ◽  
S. Coles ◽  
M. Grandé ◽  
...  

Abstract. Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

1996 ◽  
Vol 14 (5) ◽  
pp. 518-532 ◽  
Author(s):  
T. K. Yeoman ◽  
M. Pinnock

Abstract. On 17 March 1991, five clear substorm onsets/intensifications took place within a three hour interval. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were available, in addition to data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation. This interval of substorm activity has been interpreted as being in support of a near-Earth current disruption model of substorm onset. In the present study the ionospheric convection response, observed some four hours to the west in MLT by the Halley HF radar in Antarctica, is related to the growth, expansion and recovery phases of two of the substorm onsets/expansions observed in the Northern Hemisphere. Bursts of ionospheric flow and motion of the convection reversal boundary (CRB) are observed at Halley in response to the substorm activity and changes in the IMF. The delay between the substorm expansion phase onset and the response in the CRB location is dependent on the local time separation from, and latitude of, the initial substorm onset region. These results are interpreted in terms of a synthesis of the very near-Earth current disruption model and the near-Earth neutral line model of substorm onset.


2020 ◽  
Author(s):  
Wu Yingyan

<p>The geomagnetic field shows a regular diunal variation at the middle and low latitudes during geomagnetic quiet time, which is called as solar quiet daily variation (Sq). It is mainly generated from the ionosphere dynamic current system in the E-region of ionosphere, which is controlled by the ionospheric diunal and semi-diunal tidal wind field. The variation of the Sq field is greatly related to the latitude and the local time, and its amplitude and the phase vary very slowly in the whole year. Furthermore, a significant day-to-day (DTD) variation is usually seen in the amplitude and the phase of the Sq. It is greatly related to many factors such as the conductivity and the wind field in the ionosphere, and states of the magnetosphere.</p><p>This work is primarily to investigate the seasonal variation of the amplitude of the Sq field on both north-and-south sides of the Sq current, by using of the hourly data of the geomagnetic horizontal field from 75 observatories at mid-and-low latitudes. The result indicates that there is a significant seasonal variation in the amplitude of Sq(H) at all observatories, which shows a great enhancement during equinoxes months. However, a notable latitudinal asymmetry is clearly seen between the northside and southside observatories. The amplitude of Sq(H) reaches the maximum value in autumn at northside observatories, but in spring at southside observatories. This latitudinal asymmetry is most likely to reflect the tilt of the ionosphere current vortex.</p><p> </p>


2014 ◽  
Vol 32 (4) ◽  
pp. 333-351 ◽  
Author(s):  
P. E. Sandholt ◽  
C. J. Farrugia ◽  
W. F. Denig

Abstract. We study substorms from two perspectives, i.e., magnetosphere–ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) "snapshot" satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50–100 kV enhancements of the cross-polar-cap potential due to inductive electric field coupling.


2005 ◽  
Vol 23 (12) ◽  
pp. 3667-3683 ◽  
Author(s):  
N. C. Draper ◽  
M. Lester ◽  
S. W. H. Cowley ◽  
J.A. Wild ◽  
S. E. Milan ◽  
...  

Abstract. We present data from both ground- and space-based instruments for a substorm event which occurred on 5 October 2002, with an expansion phase onset time of 02:50 UT determined from the ground magnetometer data. During this substorm, the Cluster spacecraft were located around 15 RE downtail, 8 RE from midnight in the pre-midnight sector and just 2 RE above the equatorial plane (in GSM coordinates). At expansion phase onset the Cluster spacecraft were located in the plasma sheet, tailward of a near-Earth neutral line and detected a significant time delay of 6 min between the tail field Bz component becoming negative and the subsequent detection of Earthward flows. This is explained by the formation of a tailward-directed travelling compression region initially Earthward of the spacecraft; 7 min later the Cluster spacecraft entered the plasma sheet boundary layer; they remained in and close to the plasma sheet boundary layer for around 15 min before exiting to the lobe. The spacecraft then re-entered the plasma sheet 30 min after onset. Earthward then tailward directed currents detected in the plasma sheet boundary layer after onset indicate that the Cluster spacecraft encountered the dawnward and duskward portions of the reconnection flow associated current system with Region 1 sense, respectively. The reconnection site and current system were initially skewed towards the pre-midnight sector, consistent with previous observations that found the majority of substorm onsets located in this sector. At later times the reconnection site and current system had moved towards dawn, to be located more centrally in the midnight sector.


2021 ◽  
Author(s):  
Masatoshi Yamauchi ◽  
Magnar Johnsen ◽  
Shin-Ichi Othani ◽  
Dmitry Sormakov

<p>Solar flares are known to enhance the ionospheric electron density and thus influence the electric currents in the D- and E-region.  The geomagnetic disturbance caused by this current system is called a "crochet" or "SFE (solar flare effect)".  Crochets are observed at dayside low-latitudes with a peak near the subsolar region ("subsolar crochet"), in the nightside high-latitude auroral region with a peak where the geomagnetic disturbance pre-exists during solar illumination ("auroral crochet"), and in the cusp ("cusp crochet").  In addition, we recently found a new type of crochet on the dayside ionospheric current at high latitudes (European sector 70-75 geographic latitude/67-72 geomagnetic latitude) independent from the other crochets.  The new crochet is much more intense and longer in duration than the subsolar crochet and is detected even in AU index for about half the >X2 flares despite the unfavorable latitudinal coverage of the AE stations (~65 geomagnetic latitude) to detect this new crochet (Yamauchi et al., 2020).  </p><p>The signature is sometime s seen in AL, causing the crochet signature convoluting with substorms.  From a theoretical viewpoint, X-flares that enhances the ionospheric conductivity may influence the substorm activity, like the auroral crochet.  To understand the substorm-crochet relation in the dayside, we examined SuperMAG data for cases when the onset of the substorm-like AL (SML) behavior coincides with the crochet.  We commonly found a large counter-clockwise ∆B vortex centered at 13-15 LT, causing an AU peak during late afternoon and an AL peak near noon at higher latitudes than the high-latitude crochet.  In addition, we could recognize a clockwise ∆B vortex in the prenoon sector, causing another poleward ∆B, but this signature is not as clear as the afternoon vortex.  With such strong vortex features, it becomes similar to substorms except for its local time.  In some cases, the vortex expends to the nightside sector, where and when nightside onset starts, suggesting triggering of onset.  Thus, the crochet may behave like pseudo-onset at different latitude than midnight substorms, and may even trigger substorm onset.</p>


2009 ◽  
Vol 27 (4) ◽  
pp. 1509-1520 ◽  
Author(s):  
D. T. Farley

Abstract. In this short tutorial we first briefly review the basic physics of the E-region of the equatorial ionosphere, with emphasis on the strong electrojet current system that drives plasma instabilities and generates strong plasma waves that are easily detected by radars and rocket probes. We then discuss the instabilities themselves, both the theory and some examples of the observational data. These instabilities have now been studied for about half a century (!), beginning with the IGY, particularly at the Jicamarca Radio Observatory in Peru. The linear fluid theory of the important processes is now well understood, but there are still questions about some kinetic effects, not to mention the considerable amount of work to be done before we have a full quantitative understanding of the limiting nonlinear processes that determine the details of what we actually observe. As our observational techniques, especially the radar techniques, improve, we find some answers, but also more and more questions. One difficulty with studying natural phenomena, such as these instabilities, is that we cannot perform active cause-and-effect experiments; we are limited to the inputs and responses that nature provides. The one hope here is the steadily growing capability of numerical plasma simulations. If we can accurately simulate the relevant plasma physics, we can control the inputs and measure the responses in great detail. Unfortunately, the problem is inherently three-dimensional, and we still need somewhat more computer power than is currently available, although we have come a long way.


1996 ◽  
Vol 14 (12) ◽  
pp. 1462-1472 ◽  
Author(s):  
H. Nilsson ◽  
S. Kirkwood ◽  
J. Lilensten ◽  
M. Galand

Abstract. Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs) for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF) should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard) will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.


Sign in / Sign up

Export Citation Format

Share Document