scholarly journals Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

1998 ◽  
Vol 16 (5) ◽  
pp. 492-509 ◽  
Author(s):  
N. D. Diamantides

Abstract. The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

1998 ◽  
Vol 16 (5) ◽  
pp. 479-491
Author(s):  
N. D. Diamantides

Abstract. The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm


2021 ◽  
Author(s):  
José M. Vaquero

<p>Solar activity is an essential factor for the study of many aspects of the geophysical and astronomical sciences. A very simple measure of solar activity is counting sunspots using telescopes. This task can be done even with small telescopes since the Sun is apparently a very large and luminous star. For this reason, it is possible to rescue the ancient observations of sunspots made in the past centuries to obtain an image of the evolution of solar activity during the last four centuries.</p><p>The first attempt to reconstruct solar activity from these records was made by Rudolf Wolf, who defined the <em>Sunspot Number</em> index in the 19th century. The Zurich Observatory (and later the Brussels Observatory) was in charge of continuing Wolf's work to the present day. In 1998, Hoyt and Schatten presented a new reconstruction of solar activity that was very different from Wolf's reconstruction (Vaquero and Vázquez, 2009). Many of these differences were solved by Clette et al. (2014).</p><p>Currently, research to improve the <em>Sunspot Number</em> is focused on (i) improving the database by reviewing old observations, and (ii) improving the methodologies to convert raw data into the <em>Sunspot Number</em> index. In this work, we try to present the latest advances in this task (Muñoz-Jaramillo and Vaquero, 2019; Arlt and Vaquero, 2020).</p><p> </p><p>References</p><p>Arlt, R., Vaquero, J.M. (2020) Living Reviews in Solar Physics 17, 1.</p><p>Clette, F. et al. (2014) Space Science Reviews 186, 35.</p><p>Muñoz-Jaramillo, A., Vaquero, J.M. (2019) Nature Astronomy 3, 205.</p><p>Vaquero, J.M. and Vázquez, M. (2009) The Sun recorded through history (Springer).</p>


2020 ◽  
Vol 240 ◽  
pp. 07011
Author(s):  
Kushagra Shrivastava ◽  
Keith Wen Kai Chia ◽  
Kang Jun Wong ◽  
Alfred Yong Liang Tan ◽  
Hwee Tiang Ning

Solar activity research provides insight into the Sun’s past, future (Science Daily, 2018). The solar activity includes observations of large numbers of intense sunspots, flares, and other phenomena; and demands a wide range of techniques and measurements on the observations. This research needs long term data collection before critical analyses can occur, to generate meaningful learning and knowledge. In this project, we will use solar imaging to make observations of solar activity, and take our baby steps to make contributions in citizen science. Observations will be made in 3 wavelengths to gain a more thorough analysis by looking at different perspectives of the Sun, namely H-Alpha, Calcium-K, and white light.


1968 ◽  
Vol 35 ◽  
pp. 56-63 ◽  
Author(s):  
Helen W. Dodson ◽  
E. Ruth Hedeman

A graphical representation of the 66 solar rotations (Carrington) between January 1, 1962 and December 31, 1966 has been prepared. It includes all centers of activity for which the calcium plage attained an area of at least 1000 millionths of the solar hemisphere and/or intensity 3 (McMath scale). In this study the antecedents, descendents, and neighbors of each region can easily be discerned. The work shows clearly that zones of activity, apparently closely related and much larger than single plages existed for long intervals of time. For example, the significant increases in solar activity in February, May, and October of 1965 occurred in a ‘family’ of calcium plages apparently related through similarities of position and strong radio emission.The members of ‘families’ of centers of activity are found at systematically changing longitudes. For some ‘families’ the change of longitude appears to be primarily a consequence of differential rotation; for others, the pattern of formation of active centers dominates.According to the data for 1962–66 a meaningful study of the development of a center of activity may require consideration not only of the past history of the zone of the Sun in which it occurs but also of the zone approximately 180° away on the opposite hemisphere.


2020 ◽  
Vol 10 (4) ◽  
pp. 225-234
Author(s):  
S.V. Stankevych ◽  
Ye.M. Biletskyj ◽  
I.V. Zabrodina

By carrying out a theoretical synthesis of the information on the regularities of population dynamics of some insect pests of agricultural plants and based on the past and present the authors have analysed the dynamics of many years in the number of the insect populations. An attempt to determine the presence of synchronism of outbreaks of the insects’ mass reproduction with the years of sharp changes in the solar activity has been made; the relationship between the changes in the number of the insects and meteorological and heliographic factors has been analysed. An analysis of the dynamics of the sun pest reproduction taking into account the duration of sunshine on the materials of one of the outbreaks (local population) in the Kupiansk district of the Kharkiv region showed the unreliability of this index as a predicate of the prognosis; and the reproduction rate of the local population of the sun pest does not change depending on the duration of the solar radiance. It is determined that this principle is also unsuitable for forecasting the dynamics in the number of this pest. The linear differential equations, in which not only the meteorological factors but also the indices of the solar activity (global factor) were used as variables were unsuitable for prognostication the dynamics in the number of the insects. The examples listed in the article confirm the fundamental regularity, namely the polycyclic dynamics of various natural systems and the synchronism in their development. The synchronization is inevitable because all objects of inanimate and living nature consist of the same chemical elements, and the conservation and conversion of energy is universal in nature. Based on the methodology of the cyclic dynamics it is possible to develop the algorithms for prognostication the regular mass reproduction of harmful insects.


1988 ◽  
Vol 98 ◽  
pp. 177-180
Author(s):  
Klaus Reinsch

Professional solar astronomy concentrates on the study of the atmosphere and interior of the Sun. Little attention is given to “classical” programmes, mainly statistical investigations of solar activity. Although the main properties of phenomena associated with the solar cycle seem to be understood there are still enough details to be explained, making it worthwhile monitoring different indicators of solar activity, even if no immediate results are to be expected. Such routine observations are ideal work of amateur astronomers.Members of West German local astronomical societies founded the journal Sonne in 1977 to combine their efforts on solar observations. The first issue was presented at a conference on amateur solar observation held in Berlin in April 1977. Sonne is compiled by an editorial staff of 23 amateurs from all over West Germany, and is distributed among nearly 500 readers in 20 countries. With the increasing number of foreign readers, the main articles in Sonne are provided with English abstracts.


2018 ◽  
Vol 7 (1) ◽  
pp. 131
Author(s):  
Lihua Ma ◽  
Zhiqiang Yin ◽  
Yanben Han

Direct observations of solar activity are available for the past four century, so some proxies reflecting solar activity such as 14C, 10Be and geomagnetic variations are used to reconstruct solar activity in the past. In this present paper, the authors use rectified wavelet power transform and time-averaged wavelet power spectrum to investigate long-term fluctuations of the reconstructed solar activity series. Results show obvious a quasi ~500-year cycle exists in the past solar activity. Three reconstructed solar activity series from 14C variations confirm the periodic signals.


2020 ◽  
Author(s):  
P.A. Kashulin ◽  
◽  
N.V. Kalacheva ◽  
E.Y. Zhurina ◽  
◽  
...  

The long-term time-course of some environmental meteorological factors and physiological characteristics of indoor Marantha leoconeuraand Ctenanthe setosaplants cultivated under controlled lab conditions were investigated during the months of low solar activity of current solar cycle. The two weeks cycles, circaseptan and circasemiceptan cycles in natural factors change as well as in plant multi-diurnal physiological dynamics were revealed. The results points out on the cosmic provenance of the found rhythms.


2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Minjie Zheng ◽  
Florian Adolphi ◽  
Jesper Sjolte ◽  
Ala Aldahan ◽  
Göran Possnert ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document