scholarly journals Solar Activity of the Past 100 Years Inferred From 10 Be in Ice Cores—Implications for Long‐Term Solar Activity Reconstructions

2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Minjie Zheng ◽  
Florian Adolphi ◽  
Jesper Sjolte ◽  
Ala Aldahan ◽  
Göran Possnert ◽  
...  
Keyword(s):  
2018 ◽  
Vol 610 ◽  
pp. A28 ◽  
Author(s):  
S. Mancuso ◽  
C. Taricco ◽  
P. Colombetti ◽  
S. Rubinetti ◽  
N. Sinha ◽  
...  

Typical reconstructions of historic heliospheric magnetic field (HMF) BHMF are based on the analysis of the sunspot activity, geomagnetic data or on measurement of cosmogenic isotopes stored in terrestrial reservoirs like trees (14C) and ice cores (10Be). The various reconstructions of BHMF are however discordant both in strength and trend. Cosmogenic isotopes, which are produced by galactic cosmic rays impacting on meteoroids and whose production rate is modulated by the varying HMF convected outward by the solar wind, may offer an alternative tool for the investigation of the HMF in the past centuries. In this work, we aim to evaluate the long-term evolution of BHMF over a period covering the past twenty-two solar cycles by using measurements of the cosmogenic 44Ti activity (τ1∕2 = 59.2 ± 0.6 yr) measured in 20 meteorites which fell between 1766 and 2001. Within the given uncertainties, our result is compatible with a HMF increase from 4.87-0.30+0.24 nT in 1766 to 6.83-0.11+0.13 nT in 2001, thus implying an overall average increment of 1.96-0.35+0.43 nT over 235 years since 1766 reflecting the modern Grand maximum. The BHMF trend thus obtained is then compared with the most recent reconstructions of the near-Earth HMF strength based on geomagnetic, sunspot number, and cosmogenic isotope data.


10 Be is produced in a similar way as 14 C by the interaction of cosmic radiation with the nuclei in the atmosphere. Assuming that the 10 Be and 14 C variation are proportional and considering the different behaviour in the Earth system, the 10 Be concentrations in ice cores can be compared with the 14 C variations in tree rings. A high correlation is found for the short-term variations ( 14 C-Suess-wiggles). They reflect with a high probability production rate variations. More problematic is the interpretation of the long-term trends of 14 C and 10 Be. Several explanations are discussed. The reconstructed CO 2 concentrations in ice cores indicate a rather constant value (280 ± 10 p.p.m. by volume) during the past few millenia. Measurements on the ice core from Byrd Station, Antarctica, during the period 9000 to 6000 years BP indicate a decrease that might be explained by the extraction of CO 2 from the atmosphere-ocean system to build the terrestrial biomass pool during the climatic optimum.


2018 ◽  
Vol 7 (1) ◽  
pp. 131
Author(s):  
Lihua Ma ◽  
Zhiqiang Yin ◽  
Yanben Han

Direct observations of solar activity are available for the past four century, so some proxies reflecting solar activity such as 14C, 10Be and geomagnetic variations are used to reconstruct solar activity in the past. In this present paper, the authors use rectified wavelet power transform and time-averaged wavelet power spectrum to investigate long-term fluctuations of the reconstructed solar activity series. Results show obvious a quasi ~500-year cycle exists in the past solar activity. Three reconstructed solar activity series from 14C variations confirm the periodic signals.


1998 ◽  
Vol 16 (5) ◽  
pp. 492-509 ◽  
Author(s):  
N. D. Diamantides

Abstract. The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm


2021 ◽  
Author(s):  
Martin Stangl ◽  
Ulrich Foelsche

Abstract. This paper deals with the climate in the former Grand Duchy of Transylvania, now one of the three major geographical provinces of Romania, within the so-called Maunder Minimum (MM) (1645–1715), an astrophysically defined part of the Little Ice Age (LIA), which was characterized by reduced solar activity. The historical data from Transylvania are compared with that from Germany, Austria and Switzerland. This comparison for the period 1645–1715 shows good agreement but also reveals geographic characteristics of the region. For the first time, we present here a comparison between the four geographic areas in text and tabular form. Quotes from mostly German-language sources are reproduced in English translation. Furthermore, we examine for a longer period (1500–1950) the extent to which the climate of Transylvania might have been affected by long-term fluctuations in solar activity, as deduced from isotopic reconstructions from ice cores. This comparison suggests a certain solar influence but the agreement is not very pronounced. Future investigation in a pan-European context is needed to reach reliable statements. Some results are unexpected – like an unusually small number of severe winters during the last decades of the MM, where extreme cold was restricted to a few years, like the extreme winters 1699/1700 and 1708/1709.


2009 ◽  
Vol 5 (3) ◽  
pp. 1493-1520 ◽  
Author(s):  
Z. Zhu ◽  
J. Chen ◽  
J. Li ◽  
Y. Zeng ◽  
J. Li ◽  
...  

Abstract. Variations of precipitation and temperature at Lake Qinghai, NE Tibetan Plateau on decadal scales during the past 800 years were reconstructed based on the oxygen isotope values and Li/Ca ratios from ostracod shells of the single species Eucypris inflata. Higher temperature relates to lower Li/Ca ratios; higher precipitation relates to lower δ18O values, and vice versa. The good correlation between Li/Ca ratios and δ18O values of ostracod shells indicates that temperature variations corresponded well with precipitation variations on decadal scales during the past 800 years. Variations of precipitation and temperature are synchronous with variations of solar activity reconstructed from the atmospheric 14C concentration in tree rings and the 10Be concentration in ice cores. These findings suggest that, on decadal scales solar activity may be responsible for the synchronous variations of precipitation and temperature at Lake Qinghai, NE Tibetan Plateau during the past 800 years. Keywords: Precipitation variations; Temperature variations; Eucypris inflata; Li/Ca; δ18O; Synchronous variations; Lake Qinghai; Solar activity.


2021 ◽  
Author(s):  
José M. Vaquero

<p>Solar activity is an essential factor for the study of many aspects of the geophysical and astronomical sciences. A very simple measure of solar activity is counting sunspots using telescopes. This task can be done even with small telescopes since the Sun is apparently a very large and luminous star. For this reason, it is possible to rescue the ancient observations of sunspots made in the past centuries to obtain an image of the evolution of solar activity during the last four centuries.</p><p>The first attempt to reconstruct solar activity from these records was made by Rudolf Wolf, who defined the <em>Sunspot Number</em> index in the 19th century. The Zurich Observatory (and later the Brussels Observatory) was in charge of continuing Wolf's work to the present day. In 1998, Hoyt and Schatten presented a new reconstruction of solar activity that was very different from Wolf's reconstruction (Vaquero and Vázquez, 2009). Many of these differences were solved by Clette et al. (2014).</p><p>Currently, research to improve the <em>Sunspot Number</em> is focused on (i) improving the database by reviewing old observations, and (ii) improving the methodologies to convert raw data into the <em>Sunspot Number</em> index. In this work, we try to present the latest advances in this task (Muñoz-Jaramillo and Vaquero, 2019; Arlt and Vaquero, 2020).</p><p> </p><p>References</p><p>Arlt, R., Vaquero, J.M. (2020) Living Reviews in Solar Physics 17, 1.</p><p>Clette, F. et al. (2014) Space Science Reviews 186, 35.</p><p>Muñoz-Jaramillo, A., Vaquero, J.M. (2019) Nature Astronomy 3, 205.</p><p>Vaquero, J.M. and Vázquez, M. (2009) The Sun recorded through history (Springer).</p>


2022 ◽  
Author(s):  
Michael Sigl ◽  
Matthew Toohey ◽  
Joseph R. McConnell ◽  
Jihong Cole-Dai ◽  
Mirko Severi

Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual-to-multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11500 year BP to 1900 CE), constituting an extension of the previous record by 7000 years. The database incorporates new-generation ice-core aerosol records with sub-annual temporal resolution and demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica we resolve long-standing previous inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e. dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 TgS, of which 329 (39 %) are located in the low latitudes with bipolar sulfate deposition, 426 (50 %) are located in the Northern Hemisphere (NH) extratropics and 88 (10 %) are located in the Southern Hemisphere (SH) extratropics. The spatial distribution of reconstructed eruption locations is in agreement with prior reconstructions for the past 2,500 years, and follows the global distribution of landmasses. In total, these eruptions injected 7410 TgS in the stratosphere, for which tropical eruptions accounted for 70 % and NH extratropics for 25 %. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the early Holocene (9500–7000 BCE) experienced a higher number of volcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared to the past 2,500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases of volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.pangaea.de/10.1594/PANGAEA.928646 (Sigl et al., 2021).


2019 ◽  
Author(s):  
Lara Klippel ◽  
Scott St. George ◽  
Ulf Büntgen ◽  
Paul J. Krusic ◽  
Jan Esper

Abstract. The 692 proxy records of the new PAGES 2k compilation offer an unprecedented opportunity to study regional to global temperature trends associated with orbitally-driven changes in solar irradiance over the past two millennia. Here, we analyse the significance of long-term trends from 1–1800 CE in the PAGES 2k compilation’s tree-ring, ice core, marine and lake sediment records and find, unlike ice-cores, glacier dynamics, marine and lake sediments, no suggestion of a pre-industrial cooling trend in the tree-ring records. To understand why the tree-ring proxies lack a significant pre-industrial cooling, we divide the dendro data by location (high NH latitudes vs. mid latitudes), seasonal response (annual vs. summer), detrending method, and temperature sensitivity (high vs. low). We conclude the ability to detect any pre-industrial, millennial-long cooling in the tree-ring proxies does not increase with latitude, seasonal sensitivity, or detrending method. Consequently, caution is advised when using multi-proxy approaches to reconstruct long-term temperature changes.


1998 ◽  
Vol 16 (5) ◽  
pp. 479-491
Author(s):  
N. D. Diamantides

Abstract. The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm


Sign in / Sign up

Export Citation Format

Share Document