Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an “off-on” fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications

2021 ◽  
Vol 188 (1) ◽  
Author(s):  
Yumin Hao ◽  
Huiping Wang ◽  
Zihan Wang ◽  
Wenjuan Dong ◽  
Qin Hu ◽  
...  
2018 ◽  
Vol 15 (1) ◽  
pp. 47-55
Author(s):  
Xuebing Li ◽  
Haifen Yang ◽  
Ning Wang ◽  
Tijian Sun ◽  
Wei Bian ◽  
...  

Background: Morin has many pharmacological functions including antioxidant, anticancer, anti-inflammatory, and antibacterial effects. It is commonly used in the treatment of antiviral infection, gastropathy, coronary heart disease and hepatitis B in clinic. However, researches have shown that morin is likely to show prooxidative effects on the cells when the amount of treatment is at high dose, leading to the decrease of intracellular ATP levels and the increase of necrosis process. Therefore, it is necessary to determine the concentration of morin in biologic samples. Method: Novel water-soluble and green nitrogen and sulfur co-doped carbon dots (NSCDs) were prepared by a microwave heating process with citric acid and L-cysteine. The fluorescence spectra were collected at an excitation wavelength of 350 nm when solutions of NSCDs were mixed with various concentrations of morin. Results: The as-prepared NSCDs were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The fluorescence intensity of NSCDs decreased significantly with the increase of morin concentration. The fluorescence intensity of NSCDs displayed a linear response to morin in the concentration 0.10-30 μM with a low detection limit of 56 nM. The proposed fluorescent probe was applied to analysis of morin in human body fluids with recoveries of 98.0-102%. Conclusion: NSCDs were prepared by a microwave heating process. The present analytical method is sensitive to morin. The quenching process between NSCDs and morin is attributed to the static quenching. In addition, the cellular toxicity on HeLa cells indicated that the as-prepared NSCDs fluorescent probe does not show obvious cytotoxicity in cell imaging. Our proposed method possibly opens up a rapid and nontoxic way for preparing heteroatom doped carbon dots with a broad application prospect.


2019 ◽  
Vol 43 (1) ◽  
pp. 474-480 ◽  
Author(s):  
Yuankang Xu ◽  
Xiaogang Liu ◽  
Jinyan Zhao ◽  
Hanyu Wang ◽  
Zheng Liu ◽  
...  

A new fluorescent probe X based on 2-pyridin-2-ylethanamine and benzimidazo[2,1-a]benz[de]isoquinoline-7-one-12-carboxylic acid was designed and synthesized for the detection of Fe3+ and PPi.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 245 ◽  
Author(s):  
Sada Venkateswarlu ◽  
Saravanan Govindaraju ◽  
Roopkumar Sangubotla ◽  
Jongsung Kim ◽  
Min-Ho Lee ◽  
...  

The enormous ongoing industrial development has caused serious water pollution which has become a major crisis, particularly in developing countries. Among the various water pollutants, non-biodegradable heavy metal ions are the most prevalent. Thus, trace-level detection of these metal ions using a simple technique is essential. To address this issue, we have developed a fluorescent probe of Au/C nanodots (GCNDs-gold carbon nanodots) using an eco-friendly method based on an extract from waste onion leaves (Allium cepa-red onions). The leaves are rich in many flavonoids, playing a vital role in the formation of GCNDs. Transmission electron microscopy (TEM) and Scanning transmission electron microscopy-Energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping clearly indicated that the newly synthesized materials are approximately 2 nm in size. The resulting GCNDs exhibited a strong orange fluorescence with excitation at 380 nm and emission at 610 nm. The GCNDs were applied as a fluorescent probe for the detection of Hg2+ ions. They can detect ultra-trace concentrations of Hg2+ with a detection limit of 1.3 nM. The X-ray photoelectron spectroscopy results facilitated the identification of a clear detection mechanism. We also used the new probe on a real river water sample. The newly developed sensor is highly stable with a strong fluorescent property and can be used for various applications such as in catalysis and biomedicine.


2019 ◽  
Vol 5 (2) ◽  
pp. 24 ◽  
Author(s):  
Ganeshlenin Kandasamy

Carbon quantum dots (CQDs)/carbon nanodots are a new class of fluorescent carbon nanomaterials having an approximate size in the range of 2–10 nm. The majority of the reported review articles have discussed about the development of the CQDs (via simple and cost-effective synthesis methods) for use in bio-imaging and chemical-/biological-sensing applications. However, there is a severe lack of consolidated studies on the recently developed CQDs (especially doped/co-doped) that are utilized in different areas of application. Hence, in this review, we have extensively discussed about the recent development in doped and co-doped CQDs (using elements/heteroatoms—e.g., boron (B), fluorine (F), nitrogen (N), sulphur (S), and phosphorous (P)), along with their synthesis method, reaction conditions, and/or quantum yield (QY), and their emerging multi-potential applications including electrical/electronics (such as light emitting diode (LED) and solar cells), fluorescent ink for anti-counterfeiting, optical sensors (for detection of metal ions, drugs, and pesticides/fungicides), gene delivery, and temperature probing.


Sign in / Sign up

Export Citation Format

Share Document