scholarly journals In Vivo Characterization of Cortical and White Matter Microstructural Pathology in Growth Hormone-Secreting Pituitary Adenoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Taoyang Yuan ◽  
Jianyou Ying ◽  
Chuzhong Li ◽  
Lu Jin ◽  
Jie Kang ◽  
...  

BackgroundThe growth hormone (GH) and insulin-like-growth factor 1 (IGF-1) axis has long been recognized for its critical role in brain growth, development. This study was designed to investigate microstructural pathology in the cortex and white matter in growth hormone-secreting pituitary adenoma, which characterized by excessive secretion of GH and IGF-1.Methods29 patients with growth hormone-secreting pituitary adenoma (acromegaly) and 31 patients with non-functional pituitary adenoma as controls were recruited and assessed using neuropsychological test, surface-based morphometry, T1/T2-weighted myelin-sensitive magnetic resonance imaging, neurite orientation dispersion and density imaging, and diffusion tensor imaging.ResultsCompared to controls, we found 1) acromegaly had significantly increased cortical thickness throughout the bilateral cortex (pFDR < 0.05). 2) T1/T2-weighted ratio in the cortex were decreased in the bilateral occipital cortex and pre/postcentral central gyri but increased in the bilateral fusiform, insular, and superior temporal gyri in acromegaly (pFDR < 0.05). 3) T1/T2-weighted ratio were decreased in most bundles, and only a few areas showed increases in acromegaly (pFDR < 0.05). 4) Neurite density index (NDI) was significantly lower throughout the cortex and bundles in acromegaly (pTFCE < 0.05). 5) lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in extensive bundles in acromegaly (pTFCE < 0.05). 6) microstructural pathology in the cortex and white matter were associated with neuropsychological dysfunction in acromegaly.ConclusionsOur findings suggested that long-term persistent and excess serum GH/IGF-1 levels alter the microstructure in the cortex and white matter in acromegaly, which may be responsible for neuropsychological dysfunction.

2020 ◽  
Author(s):  
Erica F. Barry ◽  
John P. Loftus ◽  
Wen-Ming Luh ◽  
Mony J. de Leon ◽  
Sumit N. Niogi ◽  
...  

AbstractWhite matter dysfunction and degeneration have been a topic of great interest in healthy and pathological aging. While ex vivo studies have investigated age-related changes in canines, little in vivo canine aging research exists. Quantitative diffusion MRI such as diffusion tensor imaging (DTI) has demonstrated aging and neurodegenerative white matter changes in humans. However, this method has not been applied and adapted in vivo to canine populations. This study aimed to test the hypothesis that white matter diffusion changes frequently reported in human aging are also found in aged canines. The study used Tract Based Spatial Statistics (TBSS) and a region of interest (ROI) approach to investigate age related changes in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AxD) and radial diffusivity (RD). The results show that, compared to younger animals, aged canines have significant decreases in FA in parietal and temporal regions as well as the corpus callosum and fornix. Additionally, AxD decreases were observed in parietal, frontal and midbrain regions. Similarly, an age-related increase in RD was observed in the right parietal lobe while MD decreases were found in the midbrain. These findings suggest that canine samples offer a model for healthy human aging as they exhibit similar white matter diffusion tensor changes with age.


2009 ◽  
Vol 21 (1-2) ◽  
pp. 51-61 ◽  
Author(s):  
E. J. Rogalski ◽  
C. M. Murphy ◽  
L. deToledo-Morrell ◽  
R. C. Shah ◽  
M. E. Moseley ◽  
...  

In the present study, changes in the parahippocampal white matter (PWM), in the region that includes the perforant path, were investigated, in vivo, in 14 individuals with amnestic mild cognitive impairment (aMCI) compared to 14 elderly controls with no cognitive impairment (NCI). For this purpose, (1) volumetry; (2) diffusion tensor imaging (DTI) derived measures of mean diffusivity (MD) and fractional anisotropy (FA); and (3) tractography were used. In addition, regression models were utilized to examine the association of PWM measurements with memory decline. The results from this study confirm previous findings in our laboratory and others, showing that compared to controls, individuals with aMCI have PWM volume loss. In addition to volume reduction, participants with aMCI demonstrated a significant increase in MD, but no difference in FA, both in the PWM region and in fibers modeled to pass through the PWM region. Further, the DTI metric of MD was associated with declarative memory performance, suggesting it may be a sensitive marker for memory dysfunction. These results indicate that there is general tissue loss and degradation (decreased volume; increased MD) in individuals with aMCI compared to older people with normal cognitive function. However, the microstructural organization of remaining fibers, as determined by measures of anisotropic diffusion, is not significantly different from that of controls.


2019 ◽  
Vol 12 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Vanja Kljajevic ◽  
Asier Erramuzpe

Background: Recent findings on retrieval of proper names in cognitively healthy middle- aged persons indicate that Tip-Of-The-Tongue (TOT) states occurring during proper name retrieval implicate inferior frontal (BA 44) and parietal (BA 40) cortical areas. Such findings give rise to the possibility that anatomical connectivity via dorsal white matter may be associated with difficulties in name retrieval in midlife. Objectives & Method: Using Diffusion Tensor Imaging, we examined in vivo microstructural properties of white matter in 72 cognitively healthy Middle-Aged (MA) and 59 Young Adults (YA), comparing their naming abilities as well as testing, for possible associations between dorsal white matter integrity and naming abilities in the MA group. Results: The MA group was better in retrieving correct names (U = 1525.5, p = .006), but they also retrieved more incorrect names than YA believing they had retrieved the correct ones (U = 1265.5, p < .001). Furthermore, despite being more familiar with the tested names than YA (U = 930, p < .001), MA experienced significantly more TOTs relative to YA (U = 1498.5, p = .004). Tract-based spatial statistics showed significant group differences in values of fractional anisotropy (FA), mean diffusivity, axial diffusivity, radial diffusivity, and mode of anisotropy in a range of white matter tracts. In the MA group, FA values in the right Superior Longitudinal Fasciculus (SLF) were positively correlated with “don’t know” scores (rs = .287, p = .014). Conclusion: The association of SLF integrity and name retrieval ability in midlife indicates a need to revisit the models of name retrieval that posit no role for dorsal white matter in proper name retrieval.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Aikaterini Xekardaki ◽  
Panteleimon Giannakopoulos ◽  
Sven Haller

Neuropathological and neuroimaging studies have reported significant changes in white matter in psychiatric and neurodegenerative diseases. Diffusion tensor imaging (DTI), a recently developed technique, enables the detection of microstructural changes in white matter. It is a noninvasivein vivotechnique that assesses water molecules' diffusion in brain tissues. The most commonly used parameters are axial and radial diffusivity reflecting diffusion along and perpendicular to the axons, as well as mean diffusivity and fractional anisotropy representing global diffusion. Although the combination of these parameters provides valuable information about the integrity of brain circuits, their physiological meaning still remains controversial. After reviewing the basic principles of DTI, we report on recent contributions that used this technique to explore subtle structural changes in white matter occurring in elderly patients with bipolar disorder and Alzheimer disease.


2021 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Osama Kheiralla ◽  
Aymen Abdalkariem ◽  
Ali Alghamdi ◽  
Abdulrahman Tajaldeen ◽  
Naif Hamid

The Stria Medullaris (SM) is a white-matter tract that contains afferent fibres that connect the cognitive-emotional areas in the forebrain to the Habenula (Hb). The Hb plays an important role in behavioral responses to reward, stress, anxiety, pain, and sleep through its action on neuromodulator systems. The Fasciculus Retroflexus (FR) forms the primary output of the Hb to the midbrain. The SM, Hb, and FR are part of a special pathway between the forebrain and the midbrain known as the Dorsal Diencephalic Conduction system (DDC). Hb dysfunction is accompanied by different types of neuropsychiatric disorders, such as schizophrenia, depression, and Treatment-Resistant Depression (TRD). Due to difficulties in the imaging assessment of the SM and HB in vivo, they had not been a focus of clinical studies until the invention of Diffusion Tensor Imaging (DTI), which has revolutionized the imaging and investigation of the SM and Hb. DTI has facilitated the imaging of the SM and Hb and has provided insights into their properties through the investigation of their monoamine dysregulation. DTI is a well-established technique for mapping brain microstructure and white matter tracts; it provides indirect information about the microstructural architecture and integrity of white matter in vivo, based on water diffusion properties in the intra- and extracellular space, such as Axial Diffusivity (AD), Radial Diffusivity (RD), mean diffusivity, and Fractional Anisotropy (FA). Neurosurgeons have recognized the potential value of DTI in the direct anatomical targeting of the SM and Hb prior to Deep Brain Stimulation (DBS) surgery for the treatment of certain neuropsychiatric conditions, such as TRD. DTI is the only non-invasive method that offers the possibility of visualization in vivo of the white-matter tracts and nuclei in the human brain. This review study summarizes the use of DTI as a promising new imaging method for accurate identification of the SM and Hb, with special emphasis on direct anatomical targeting of the SM and Hb prior to DBS surgery.


2021 ◽  
Vol 80 (2) ◽  
pp. 567-576
Author(s):  
Fei Han ◽  
Fei-Fei Zhai ◽  
Ming-Li Li ◽  
Li-Xin Zhou ◽  
Jun Ni ◽  
...  

Background: Mechanisms through which arterial stiffness impacts cognitive function are crucial for devising better strategies to prevent cognitive decline. Objective: To examine the associations of arterial stiffness with white matter integrity and cognition in community dwellings, and to investigate whether white matter injury was the intermediate of the associations between arterial stiffness and cognition. Methods: This study was a cross-sectional analysis on 952 subjects (aged 55.5±9.1 years) who underwent diffusion tensor imaging and measurement of brachial-ankle pulse wave velocity (baPWV). Both linear regression and tract-based spatial statistics were used to investigate the association between baPWV and white matter integrity. The association between baPWV and global cognitive function, measured as the mini-mental state examination (MMSE) was evaluated. Mediation analysis was performed to assess the influence of white matter integrity on the association of baPWV with MMSE. Results: Increased baPWV was significantly associated with lower mean global fractional anisotropy (β= –0.118, p < 0.001), higher mean diffusivity (β= 0.161, p < 0.001), axial diffusivity (β= 0.160, p < 0.001), and radial diffusivity (β= 0.147, p < 0.001) after adjustment of age, sex, and hypertension, which were measures having a direct effect on arterial stiffness and white matter integrity. After adjustment of age, sex, education, apolipoprotein E ɛ4, cardiovascular risk factors, and brain atrophy, we found an association of increased baPWV with worse performance on MMSE (β= –0.093, p = 0.011). White matter disruption partially mediated the effect of baPWV on MMSE. Conclusion: Arterial stiffness is associated with white matter disruption and cognitive decline. Reduced white matter integrity partially explained the effect of arterial stiffness on cognition.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
A Das ◽  
K Kelly ◽  
M Aldred ◽  
I Teh ◽  
CK Stoeck ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): Heart Research UK Background Diffusion tensor cardiac magnetic resonance (DT-CMR) imaging allows for characterising myocardial microstructure in-vivo using mean diffusivity (MD), fractional anisotropy (FA), secondary eigenvector angle (E2A) and helix angle (HA) maps. Following myocardial infarction (MI), alterations in MD, FA and HA proportions have previously been reported. E2A depicts the contractile state of myocardial sheetlets, however the behaviour of E2A in infarct segments, and all DTI markers in areas of microvascular obstruction (MVO) is also not fully understood.  Purpose We performed spin echo DTI in patients following ST-elevation MI (STEMI) in order to investigate acute changes in DTI parameters in remote and infarct segments both with and without MVO. Method Twenty STEMI patients (16 men, 4 women, mean age 59) had acute (5 ± 2d) 3T CMR scans. CMR protocol included: second order motion compensated (M012) free-breathing spin echo DTI (3 slices, 18 diffusion directions at b-values 100s/mm2[3], 200s/mm2[3] and 500s/mm2[12], reconstructed resolution was 1.66x1.66x8mm); cine and late gadolinium enhancement (LGE) imaging. Average MD, FA, E2A HA parameters were calculated on a  16 AHA segmental level. HA maps were described by dividing values into left-handed HA (LHM, -90° &lt; HA &lt; -30°), circumferential HA (CM, -30° &lt; HA &lt; 30°), and right-handed HA (RHM, 30° &lt; HA &lt; 90°) and reported as relative proportions. Segments were defined as infarct (positive for LGE) and remote (opposite to the infarct).  Results DTI acquisition was successful in all patients (acquisition time 13 ± 5mins). Ten patients had evidence of MVO on LGE images. MD was significantly higher in infarct regions in comparison to remote; MVO-ve infarct segments had significantly higher MD than MVO + ve infarct segments (MD remote= 1.46 ± 0.12x10-3mm2/s, MD MVO + ve = 1.59 ± 0.12x10-3mm2/s, MD MVO-ve  = 1.75 ± 0.12x10-3mm2/s, ANOVA p &lt; 0.01). FA was reduced in infarct segments in comparison to remote; MVO-ve infarct segments had significantly lower FA than MVO + ve infarct segments (FAremote= 0.37 ± 0.02, FA MVO + ve = 0.31 ± 0.02 x 10-3mm2/s, MD MVO-ve =0.25 ± 0.02, ANOVA p &lt; 0.01). E2A values were significantly lower in infarct segments compared to remote; MVO + ve infarct segments had significantly lower values than MVO-ve. (E2A remote= 57.4 ± 5.2°, E2A MVO-ve = 46.8 ± 2.5°, E2A MVO + ve = 36.8 ± 3.1°, ANOVA p &lt; 0.001). RHM% (corresponding to subendocardium) was significantly lower in infarct segments compared to remote; MVO + ve infarct segments had significantly lower RHM% than MVO-ve. (RHM remote= 37 ± 3%, RHM RHM MVO-ve= 28 ± 7%, MVO + ve= 8 ± 5%, ANOVA p &lt; 0.001). Conclusion The presence of MVO results in a decrease in MD and increase in FA in comparison to surrounding infarct segments. However, the reduction in E2A and right-handed myocytes on HA in infarct segments is further exacerbated by the presence of MVO. Further study is required to investigate the underlying mechanisms for such alterations in signal intensity. Abstract Figure. A case of transmural septal MI with MVO


2021 ◽  
pp. 0271678X2199098
Author(s):  
Saima Hilal ◽  
Siwei Liu ◽  
Tien Yin Wong ◽  
Henri Vrooman ◽  
Ching-Yu Cheng ◽  
...  

To determine whether white matter network disruption mediates the association between MRI markers of cerebrovascular disease (CeVD) and cognitive impairment. Participants (n = 253, aged ≥60 years) from the Epidemiology of Dementia in Singapore study underwent neuropsychological assessments and MRI. CeVD markers were defined as lacunes, white matter hyperintensities (WMH), microbleeds, cortical microinfarcts, cortical infarcts and intracranial stenosis (ICS). White matter microstructure damage was measured as fractional anisotropy and mean diffusivity by tract based spatial statistics from diffusion tensor imaging. Cognitive function was summarized as domain-specific Z-scores. Lacunar counts, WMH volume and ICS were associated with worse performance in executive function, attention, language, verbal and visual memory. These three CeVD markers were also associated with white matter microstructural damage in the projection, commissural, association, and limbic fibers. Path analyses showed that lacunar counts, higher WMH volume and ICS were associated with executive and verbal memory impairment via white matter disruption in commissural fibers whereas impairment in the attention, visual memory and language were mediated through projection fibers. Our study shows that the abnormalities in white matter connectivity may underlie the relationship between CeVD and cognition. Further longitudinal studies are needed to understand the cause-effect relationship between CeVD, white matter damage and cognition.


2009 ◽  
Vol 21 (7) ◽  
pp. 1406-1421 ◽  
Author(s):  
Elizabeth A. Olson ◽  
Paul F. Collins ◽  
Catalina J. Hooper ◽  
Ryan Muetzel ◽  
Kelvin O. Lim ◽  
...  

Healthy participants (n = 79), ages 9–23, completed a delay discounting task assessing the extent to which the value of a monetary reward declines as the delay to its receipt increases. Diffusion tensor imaging (DTI) was used to evaluate how individual differences in delay discounting relate to variation in fractional anisotropy (FA) and mean diffusivity (MD) within whole-brain white matter using voxel-based regressions. Given that rapid prefrontal lobe development is occurring during this age range and that functional imaging studies have implicated the prefrontal cortex in discounting behavior, we hypothesized that differences in FA and MD would be associated with alterations in the discounting rate. The analyses revealed a number of clusters where less impulsive performance on the delay discounting task was associated with higher FA and lower MD. The clusters were located primarily in bilateral frontal and temporal lobes and were localized within white matter tracts, including portions of the inferior and superior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, and splenium of the corpus callosum. FA increased and MD decreased with age in the majority of these regions. Some, but not all, of the discounting/DTI associations remained significant after controlling for age. Findings are discussed in terms of both developmental and age-independent effects of white matter organization on discounting behavior.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xinfeng Yu ◽  
Xinzhen Yin ◽  
Hui Hong ◽  
Shuyue Wang ◽  
Yeerfan Jiaerken ◽  
...  

Abstract Background White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs. Methods Thirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds. Results We found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds. Conclusions Our study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future.


Sign in / Sign up

Export Citation Format

Share Document