scholarly journals Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon

2008 ◽  
Vol 95 (3-4) ◽  
pp. 349-360 ◽  
Author(s):  
Valerie Trouet ◽  
Alan H. Taylor ◽  
Andrew M. Carleton ◽  
Carl N. Skinner
Author(s):  
Julien Ruffault ◽  
Thomas Curt ◽  
Nicolas K. Martin St-Paul ◽  
Vincent Moron ◽  
Ricardo M. Trigo

Abstract. Increasing drought conditions under global warming are expected to alter the frequency and distribution of large, high intensity wildfires. Yet, little is known regarding how it will affect fire weather and translate into wildfire behaviour. Here, we analysed the climatology of extreme wildfires that occurred during the exceptionally dry summers of 2003 and 2016 in Mediterranean France. We identified two distinct shifts in fire climatology towards fire weather spaces that had not been explored before, and which result from specific interactions between the types of drought and the types of fire. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heatwave with a press drought intensified heat-driven fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and create several new generations of wildfire overwhelming fire suppression capacities.


2007 ◽  
Vol 16 (4) ◽  
pp. 361 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Cameron P. Yates ◽  
Peter J. Whitehead ◽  
Richard Smith ◽  
Ron Craig ◽  
...  

Australia is among the most fire-prone of continents. While national fire management policy is focused on irregular and comparatively smaller fires in densely settled southern Australia, this comprehensive assessment of continental-scale fire patterning (1997–2005) derived from ~1 km2 Advanced Very High Resolution Radiometer (AVHRR) imagery shows that fire activity occurs predominantly in the savanna landscapes of monsoonal northern Australia. Statistical models that relate the distribution of large fires to a variety of biophysical variables show that, at the continental scale, rainfall seasonality substantially explains fire patterning. Modelling results, together with data concerning seasonal lightning incidence, implicate the importance of anthropogenic ignition sources, especially in the northern wet–dry tropics and arid Australia, for a substantial component of recurrent fire extent. Contemporary patterns differ markedly from those under Aboriginal occupancy, are causing significant impacts on biodiversity, and, under current patterns of human population distribution, land use, national policy and climate change scenarios, are likely to prevail, if not intensify, for decades to come. Implications of greenhouse gas emissions from savanna burning, especially seasonal emissions of CO2, are poorly understood and contribute to important underestimation of the significance of savanna emissions both in Australian and probably in international greenhouse gas inventories. A significant challenge for Australia is to address annual fire extent in fire-prone Australian savannas.


2020 ◽  
Vol 29 (10) ◽  
pp. 857 ◽  
Author(s):  
Jesse D. Young ◽  
Alexander M. Evans ◽  
Jose M. Iniguez ◽  
Andrea Thode ◽  
Marc D. Meyer ◽  
...  

In 2009, new guidance for wildland fire management in the United States expanded the range of strategic options for managers working to reduce the threat of high-severity wildland fire, improve forest health and respond to a changing climate. Markedly, the new guidance provided greater flexibility to manage wildland fires to meet multiple resource objectives. We use Incident Status Summary reports to understand how wildland fire management strategies have differed across the western US in recent years and how management has changed since the 2009 Guidance for Implementation of Federal Wildland Fire Management Policy. When controlling for confounding variation, we found the 2009 Policy Guidance along with other concurrent advances in fire management motivated an estimated 27 to 73% increase in the number of fires managed with expanded strategic options, with only limited evidence of an increase in size or annual area burned. Fire weather captured a manager’s intent and allocation of fire management resources relative to burning conditions, where a manager’s desire and ability to suppress is either complemented by fire weather, at odds with fire weather, or put aside due to other priorities. We highlight opportunities to expand the use of strategic options in fire-adapted forests to improve fuel heterogeneity.


2013 ◽  
Vol 28 (3) ◽  
pp. 704-710 ◽  
Author(s):  
John T. Abatzoglou ◽  
Renaud Barbero ◽  
Nicholas J. Nauslar

Abstract Santa Ana winds (SAW) are among the most notorious fire-weather conditions in the United States and are implicated in wildfire and wind hazards in Southern California. This study employs large-scale reanalysis data to diagnose SAW through synoptic-scale dynamic and thermodynamic factors using mean sea level pressure gradient and lower-tropospheric temperature advection, respectively. A two-parameter threshold model of these factors exhibits skill in identifying surface-based characteristics of SAW featuring strong offshore winds and extreme fire weather as viewed through the Fosberg fire weather index across Remote Automated Weather Stations in southwestern California. These results suggest that a strong northeastward gradient in mean sea level pressure aligned with strong cold-air advection in the lower troposphere provide a simple, yet effective, means of diagnosing SAW from synoptic-scale reanalysis. This objective method may be useful for medium- to extended-range forecasting when mesoscale model output may not be available, as well as being readily applied retrospectively to better understand connections between SAW and wildfires in Southern California.


2016 ◽  
Vol 16 (2) ◽  
pp. 509-528 ◽  
Author(s):  
S. Jeffrey Underwood ◽  
Michael D. Schultz ◽  
Metteo Berti ◽  
Carlo Gregoretti ◽  
Alessandro Simoni ◽  
...  

Abstract. The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydro-geologic events. In the past, debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass-wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of 3 days prior to debris flow events to gain insight into the synoptic-scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CF flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal colocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.


2014 ◽  
Vol 25 (6) ◽  
pp. 406-416 ◽  
Author(s):  
Douglas G. Woolford ◽  
C.B. Dean ◽  
David L. Martell ◽  
Jiguo Cao ◽  
B.M. Wotton

Author(s):  
Shiori Sugimoto ◽  
Kenichi Ueno ◽  
Hatsuki Fujinami ◽  
Tomoe Nasuno ◽  
Tomonori Sato ◽  
...  

AbstractA numerical experiment with a 2-km resolution was conducted using the Weather Research and Forecasting (WRF) model to investigate physical processes driving nocturnal precipitation over the Himalayas during the mature monsoon seasons between 2003 and 2010. The WRF model simulations of increases in precipitation twice a day, one in the afternoon and another around midnight, over the Himalayan slopes, and of the single nocturnal peak over the Himalayan foothills were reasonably accurate. To understand the synoptic-scale moisture transport and its local-scale convergence generating the nocturnal precipitation, composite analyses were conducted using the reanalysis dataset and model outputs. In the synoptic scale, moisture transport associated with the westward propagation of low pressure systems was found when nocturnal precipitation dominated over the Himalayan slopes. In contrast, moisture was directly provided from the synoptic-scale monsoon westerlies for nocturnal precipitation over the foothills. The model outputs suggested that precipitation occurred on the mountain ridges in the Himalayas during the afternoon, and expanded horizontally towards lower-elevation areas through the night. During the nighttime, the downslope wind was caused by radiative cooling at the surface and was intensified by evaporative cooling by hydrometeors in the near-surface layer. As a result, convergence between the downslope wind and the synoptic-scale flow promoted nocturnal precipitation over the Himalayas and to the south, as well as the moisture convergence by orography and/or synoptic-scale circulation patterns. The nocturnal precipitation over the Himalayas was not simulated well when we used the coarse topographic resolution and the smaller number of vertical layers.


Sign in / Sign up

Export Citation Format

Share Document