Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines

2015 ◽  
Vol 226 (9) ◽  
pp. 3085-3096 ◽  
Author(s):  
M. Hashemi ◽  
M. Asghari
Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 331
Author(s):  
Kosei Takishita ◽  
Alexandros P. Poulidis ◽  
Masato Iguchi

Vulcanian eruptions (short-lived explosions consisting of a rising thermal) occur daily in volcanoes around the world. Such small-scale eruptions represent a challenge in numerical modeling due to local-scale effects, such as the volcano’s topography impact on atmospheric circulation and near-vent plume dynamics, that need to be accounted for. In an effort to improve the applicability of Tephra2, a commonly-used advection-diffusion model, in the case of vulcanian eruptions, a number of key modifications were carried out: (i) the ability to solve the equations over bending plume, (ii) temporally-evolving three-dimensional meteorological fields, (iii) the replacement of the particle diameter distribution with observed particle terminal velocity distribution which provides a simple way to account for the settling velocity variation due to particle shape and density. We verified the advantage of our modified model (Tephra4D) in the tephra dispersion from vulcanian eruptions by comparing the calculations and disdrometer observations of tephra sedimentation from four eruptions at Sakurajima volcano, Japan. The simulations of the eruptions show that Tephra4D is useful for eruptions in which small-scale movement contributes significantly to ash transport mainly due to the consideration for orographic winds in advection.


2015 ◽  
Vol 07 (05) ◽  
pp. 1550075 ◽  
Author(s):  
Mohsen Asghari ◽  
Mehdi Hashemi

In this paper, the coupled three-dimensional flexural vibration of micro-rotors is investigated by taking into account the small-scale effects utilizing the strain gradient theory, which is a powerful nonclassical continuum theory in capturing small-scale effects. A micro-rotor consists mainly of a flexible micro-rotating shaft and a disk. With the aid of Hamilton's principle, governing equations of motion are derived and then transformed to the complex form. By implementing the Galerkin's method, a coupled ordinary differential equation is attained for the system. Expressions for the first two natural frequencies of the spinning micro-rotors are obtained with truncated two-term equation. Parametric studies on the results for different responses illustrate that the values of higher-order material constants may have significant effects on the natural frequencies of the system.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


Author(s):  
Jan Awrejcewicz ◽  
Grzegorz Kudra ◽  
Olga Mazur

AbstractIn this paper vibrations of the isotropic micro/nanoplates subjected to transverse and in-plane excitation are investigated. The governing equations of the problem are based on the von Kármán plate theory and Kirchhoff–Love hypothesis. The small-size effect is taken into account due to the nonlocal elasticity theory. The formulation of the problem is mixed and employs the Airy stress function. The two-mode approximation of the deflection and application of the Bubnov–Galerkin method reduces the governing system of equations to the system of ordinary differential equations. Varying the load parameters and the nonlocal parameter, the bifurcation analysis is performed. The bifurcations diagrams, the maximum Lyapunov exponents, phase portraits as well as Poincare maps are constructed based on the numerical simulations. It is shown that for some excitation conditions the chaotic motion may occur in the system. Also, the small-scale effects on the character of vibrating regimes are illustrated and discussed.


2020 ◽  
Vol 7 (1) ◽  
pp. 153-165
Author(s):  
Rajendran Selvamani ◽  
M. Mahaveer Sree Jayan ◽  
Rossana Dimitri ◽  
Francesco Tornabene ◽  
Farzad Ebrahimi

AbstractThe present paper aims at studying the nonlinear ultrasonic waves in a magneto-thermo-elastic armchair single-walled (SW) carbon nanotube (CNT) with mass sensors resting on a polymer substrate. The analytical formulation accounts for small scale effects based on the Eringen’s nonlocal elasticity theory. The mathematical model and its differential equations are solved theoretically in terms of dimensionless frequencies while assuming a nonlinear Winkler-Pasternak-type foundation. The solution is obtained by means of ultrasonic wave dispersion relations. A parametric work is carried out to check for the effect of the nonlocal scaling parameter, together with the magneto-mechanical loadings, the foundation parameters, the attached mass, boundary conditions and geometries, on the dimensionless frequency of nanotubes. The sensitivity of the mechanical response of nanotubes investigated herein, could be of great interest for design purposes in nano-engineering systems and devices.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


2015 ◽  
Vol 19 (11) ◽  
pp. 4531-4545 ◽  
Author(s):  
J. Zhu ◽  
C. L. Winter ◽  
Z. Wang

Abstract. Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream–aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream–aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream–aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer–stream exchanges. Since surface water–groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.


Sign in / Sign up

Export Citation Format

Share Document