scholarly journals Post-embryonic development of the Malpighian tubules in Apis mellifera (Hymenoptera) workers: morphology, remodeling, apoptosis, and cell proliferation

PROTOPLASMA ◽  
2017 ◽  
Vol 255 (2) ◽  
pp. 585-599 ◽  
Author(s):  
Wagner Gonzaga Gonçalves ◽  
Kenner Morais Fernandes ◽  
Weyder Cristiano Santana ◽  
Gustavo Ferreira Martins ◽  
José Cola Zanuncio ◽  
...  
Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 243-253 ◽  
Author(s):  
Joseph Jack ◽  
Guy Myette

Abstract The products of two genes, raw and ribbon (rib), are required for the proper morphogenesis of a variety of tissues. Malpighian tubules mutant for raw or rib are wider and shorter than normal tubules, which are only two cells in circumference when they are fully formed. The mutations alter the shape of the tubules beginning early in their formation and block cell rearrangement late in development, which normally lengthens and narrows the tubes. Mutations of both genes affect a number of other tissues as well. Both genes are required for dorsal closure and retraction of the CNS during embryonic development. In addition, rib mutations block head involution, and broaden and shorten other tubular epithelia (salivary glands, tracheae, and hindgut) in much same manner as they alter the shape of the Malpighian tubules. In tissues in which the shape of cells can be observed readily, rib mutations alter cell shape, which probably causes the change in shape of the organs that are affected. In double mutants raw enhances the phenotypes of all the tissues that are affected by rib but unaffected by raw alone, indicating that raw is also active in these tissues.


2019 ◽  
Vol 59 (2) ◽  
pp. 178-184 ◽  
Author(s):  
Débora Linhares Lino de Souza ◽  
Weyder Cristiano Santana ◽  
José Cola Zanuncio ◽  
José Eduardo Serrão

2005 ◽  
Vol 25 (8) ◽  
pp. 2924-2937 ◽  
Author(s):  
Kaoru Tominaga ◽  
Bhakti Kirtane ◽  
James G. Jackson ◽  
Yuji Ikeno ◽  
Takayoshi Ikeda ◽  
...  

ABSTRACT MRG15 is a highly conserved protein, and orthologs exist in organisms from yeast to humans. MRG15 associates with at least two nucleoprotein complexes that include histone acetyltransferases and/or histone deacetylases, suggesting it is involved in chromatin remodeling. To study the role of MRG15 in vivo, we generated knockout mice and determined that the phenotype is embryonic lethal, with embryos and the few stillborn pups exhibiting developmental delay. Immunohistochemical analysis indicates that apoptosis in Mrg15 − / − embryos is not increased compared with wild-type littermates. However, the number of proliferating cells is significantly reduced in various tissues of the smaller null embryos compared with control littermates. Cell proliferation defects are also observed in Mrg15 − / − mouse embryonic fibroblasts. The hearts of the Mrg15 − / − embryos exhibit some features of hypertrophic cardiomyopathy. The increase in size of the cardiomyocytes is most likely a response to decreased growth of the cells. Mrg15 − / − embryos appeared pale, and microarray analysis revealed that α-globin gene expression was decreased in null versus wild-type embryos. We determined by chromatin immunoprecipitation that MRG15 was recruited to the α-globin promoter during dimethyl sulfoxide-induced mouse erythroleukemia cell differentiation. These findings demonstrate that MRG15 has an essential role in embryonic development via chromatin remodeling and transcriptional regulation.


2000 ◽  
Vol 14 (14) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ken-ichi Tago ◽  
Tsutomu Nakamura ◽  
Michiru Nishita ◽  
Junko Hyodo ◽  
Shin-ichi Nagai ◽  
...  

Wnt signaling has an important role in both embryonic development and tumorigenesis. β-Catenin, a key component of the Wnt signaling pathway, interacts with the TCF/LEF family of transcription factors and activates transcription of Wnt target genes. Here, we identify a novel β-catenin-interacting protein, ICAT, that was found to inhibit the interaction of β-catenin with TCF-4 and represses β-catenin–TCF-4-mediated transactivation. Furthermore, ICAT inhibited Xenopus axis formation by interfering with Wnt signaling. These results suggest that ICAT negatively regulates Wnt signaling via inhibition of the interaction between β-catenin and TCF and is integral in development and cell proliferation.


1936 ◽  
Vol s2-78 (311) ◽  
pp. 487-511
Author(s):  
A. J. THOMAS

1. The maturation of the egg takes place in the ovarian tube, and is immediately followed by the formation of the cleavagenucleus and its division into many nuclei. 2. The entire products of the cleavage-nucleus migrate to the surface to form the blastoderm. Cleavage of the yolk was not observed even in late stages. Yolk-cells are absent when the blastoderm is being formed. 3. Primitive endodermal cells are proliferated from the middle of the germ-band, and form a membrane between the germ-band and the yolk. The membrane is present only in embryonic stages; some of the cells proliferated wander into the yolk and act as vitellophags. 4. Mesoderm is formed by proliferation of cells from the ventral plate. It is preceded by the formation of a shallow gastrular furrow, and from the bottom of this furrow proliferation takes place. The mesoderm becomes arranged in segmental masses. 5. Two masses of cells proliferated at the anterior and posterior ends of the germ-band are shown to be the endodermal rudiments from which the mid-gut epithelium is formed. The invaginations of the stomodaeum and proctodaeum grow against these masses and carry parts of the proliferating areas near their blind ends. It is shown that the various methods of mid-gut formation which have been described could be reconciled with the process described in Carausius. 6. The hinder end of the mid-gut is flanked by two plates of ectoderm which are forward extensions of the proctodaeum. Into these extensions the Malpighian tubules open, and, as their histology is identical with that of these extensions and widely different from that of the mid-gut, these tubules must be ectodermal in nature. 7. The formation of the amnion and serosa are described.


Zoology ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 231-251 ◽  
Author(s):  
Marcela Buchtová ◽  
Julia C. Boughner ◽  
Katherine Fu ◽  
Virginia M. Diewert ◽  
Joy M. Richman

1996 ◽  
pp. 95-144 ◽  
Author(s):  
Jean-Marc Lemaitre ◽  
Robin S. Buckle ◽  
Marcel Méchali

Sign in / Sign up

Export Citation Format

Share Document