scholarly journals MRG15 Regulates Embryonic Development and Cell Proliferation

2005 ◽  
Vol 25 (8) ◽  
pp. 2924-2937 ◽  
Author(s):  
Kaoru Tominaga ◽  
Bhakti Kirtane ◽  
James G. Jackson ◽  
Yuji Ikeno ◽  
Takayoshi Ikeda ◽  
...  

ABSTRACT MRG15 is a highly conserved protein, and orthologs exist in organisms from yeast to humans. MRG15 associates with at least two nucleoprotein complexes that include histone acetyltransferases and/or histone deacetylases, suggesting it is involved in chromatin remodeling. To study the role of MRG15 in vivo, we generated knockout mice and determined that the phenotype is embryonic lethal, with embryos and the few stillborn pups exhibiting developmental delay. Immunohistochemical analysis indicates that apoptosis in Mrg15 − / − embryos is not increased compared with wild-type littermates. However, the number of proliferating cells is significantly reduced in various tissues of the smaller null embryos compared with control littermates. Cell proliferation defects are also observed in Mrg15 − / − mouse embryonic fibroblasts. The hearts of the Mrg15 − / − embryos exhibit some features of hypertrophic cardiomyopathy. The increase in size of the cardiomyocytes is most likely a response to decreased growth of the cells. Mrg15 − / − embryos appeared pale, and microarray analysis revealed that α-globin gene expression was decreased in null versus wild-type embryos. We determined by chromatin immunoprecipitation that MRG15 was recruited to the α-globin promoter during dimethyl sulfoxide-induced mouse erythroleukemia cell differentiation. These findings demonstrate that MRG15 has an essential role in embryonic development via chromatin remodeling and transcriptional regulation.

2017 ◽  
Vol 67 (1) ◽  
pp. 1-10
Author(s):  
Gordana Joksić ◽  
Mileva Mićić ◽  
Jelena Filipović ◽  
Dunja Drakulić ◽  
Miloš Stanojlović ◽  
...  

AbstractThe study of cell proliferation is a useful tool in the fields of toxicology, pathophysiology and pharmacology. Cell proliferation and its degree can be evaluated using 5-bromo-2′-deoxyuridine which is incorporated into the newly synthesized DNA. The aim of this study was the optimization of subcutaneous application of 5-bromo-2′-deoxyuridine implantation for continuous and persistent marking of proliferating cells in the rat forestomach. 3-tert-Butyl-4-hydroxyanisole was used as the agent that ensures cell proliferation. In order to determine the optimal dose for proliferating cells labeling, 5-bromo-2′-deoxyuridine doses of 50 mg, 100 mg, 200 mg or 350 mg were implemented 2 days prior to sacrifice by flat-faced cylindrical matrices. Immunohistochemical analysis using 5-bromo-2′-deoxyuridine in situ detection kit was performed for the detection of 5-bromo-2′-deoxyuridine labeled cells. The results showed that for adult rats, the optimum 5-bromo-2′-deoxyuridine dose is 200 mg per animal for subcutaneous application. The here described manner of 5-bromo-2′-deoxyuridine in vivo labeling provides a simple, efficient, and reliable method for cell labeling, and at the same minimizes stress to animals.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1012-1012
Author(s):  
Valya Ramakrishnan ◽  
Li Liu ◽  
Subhradip Karmakar ◽  
Milind Mahajan ◽  
Sherman M. Weissman ◽  
...  

Abstract Abstract 1012 The clinical symptoms of sickle cell disease can be ameliorated by increased fetal hemoglobin (HbF) levels. Previous work from our laboratory demonstrated that Trichostatin A (TSA) and sodium butyrate (NaB) activate γ-globin expression via p38 MAPK signaling. In addition, cAMP response element binding protein 1 (CREB1) was shown to trans-activate the -1222 Gγ-globin cAMP response element (G-CRE) in a transient assay system. To study the role of p38 MAPK signaling in γ-globin regulation, loss of function siRNA studies were performed in K562 cells. siRNA-mediated knockdown of p38 MAPK resulted in 72% loss of γ-globin transcription. Furthermore, enforced stable expression of MKK3/6 increased the phosphorylated form of p38 MAPK by 70%, which in turn produced a 2- to 3-fold increase in γ-globin mRNA and HbF levels. Likewise, siCREB1 treatment reduced CREB1 levels by 62% and down regulated γ-globin expression 59%. In the same vein, stable expression of recombinant CREB1 activated HbF by 2-fold. These findings were subsequently confirmed in human primary erythroid cells grown in a two-phase liquid culture system. On day 11, we observed 50–70% γ-globin silencing after CREB1 and p38 MAPK siRNA knockdown with 60% target gene silencing. CREB1 enforced expression trans-activated γ-globin 4.5-fold which was accompanied by a 90% increase in HbF-FITC positive cells and HbF levels. Collectively, these data demonstrate that p38 MAPK and CREB1 are required for steady-state γ-globin gene transcription. To determine the role of the G-CRE in γ-globin regulation, the Gγ-globin promoter (-1500 to +36) was cloned into pGL4.17 Luc2/neo to produce pGγLuc2 (wild type) and mutant plasmids: -1225 G/A (m1), -1227 AC/TG (m2) and a scrambled G-CRE (m3s). Five K562 stable lines including KLuc2 (promoterless), KGγLuc2, KGγLuc2(m1), KGγLuc2(m2) and KGγLuc2(m3s) were established. Luciferase activity in KGγLuc2 was 1000-fold higher than in the control Kluc2 line; all mutations produced >90% loss of luciferase activity and a loss of γ-globin trans-activation by TSA and NaB. Next, siRNA studies were completed to determine if the G-CRE is required for γ-globin activation. A dose-dependent loss of promoter activity was observed after p38 MAPK and CREB1 siRNA knockdown of the KGγLuc2 cell line; however, promoter silencing was not observed in the mutant lines supporting a role for the G-CRE in p38 MAPK/CREB1 mediated γ-globin regulation. To study in vivo binding, chromatin immunoprecipitation (ChIP) assays were performed with CREB1 antibody in the KGγLuc2 stable line. We observed comparable 2- to 3-fold chromatin enrichment with CREB1 compared to the control IgG in the G-CRE regions of the pGγLuc2 plasmid and endogenous Gγ-globin promoter. To determine if an enhanceosome complex is bound to the G-CRE, we performed affinity column pull-down/mass spectrometry analysis. K562 nuclear extract was purified on a Heparin Sepharose column, following which fractions eluting at 0.6M NaCl showing peak gel shift binding activities with the G-CRE oligo were loaded into a size selecting Suprose 6 gel exclusion column. G-CRE eluting fractions were then identified by protein microsequencing (MS/MS). We identified CREB1, ATF2, c-Jun, BRG-1, hnRNPC1/C2, and the TCP-1 complex as major components. To determine protein co-localization, promoter pull-down assays were performed using biotinylated wild type and mutant (AC/TG) G-CRE probes and K562 nuclear extracts. We observed simultaneous CREB1, ATF-2 and cJun binding to the G-CRE which was abolished in the mutant probe. However, Brg1 was bound after NaB (2mM) induction. Subsequent co-IP studies showed interactions between ATF-2 and Brg1, CREB1, cJun, and hnRNPC1C2, which was further confirmed by co-elution profile of these molecules observed by sucrose gradient centrifugation, thus implying association as one complex. These data support complex protein-protein interactions in the G-CRE, which modulate γ-globin gene expression. Additional studies will be performed in primary erythroid cells using siRNA-based gene silencing and ChIP assays to determine novel mechanisms of γ-globin regulation and to define in vivo binding of proteins identified in the G-CRE enhanceosome complex. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3189-3189
Author(s):  
Aurelie Desgardin ◽  
Valerie M. Jansen ◽  
Tatiana Abramova ◽  
Eun-Hee Shim ◽  
John M Cunningham

Abstract Abstract 3189 Binding of the Krüppel-like Factor 1 (KLF1) to the β-globin gene promoter is required for developmental stage-specific chromatin remodeling and transcriptional initiation. Interaction with a long-range enhancer, the Locus Control Region (LCR) is also required for maximal gene expression. KLF1 binds the LCR, and has been described recently as a facilitator of the proximal clustering of the LCR with the β-globin gene promoter region. To elucidate the role(s) of KLF1 at the LCR and their relationship to β-globin gene activation, we evaluated KLF1-directed events across the β-globin locus using a 4-OH-Tamoxifen KLF-1 inducible erythroid cell line. KLF1 binding was maximal 1 hour post-induction at the LCR, whereas 2 hours elapsed prior to maximal occupancy at the β-globin promoter. The site-specific differential in factor occupancy is consistent with the notion that the LCR serves as a nucleating docking element for sequence-specific transcription factors as well as the RNA Pol-II complex. LCR occupancy by Pol-II, p45 NF-E2, GATA-1 and the SCL/LMO2/Ldb1 complex was KLF1-independent. In contrast, the occupancy of the β-globin promoter by Pol-II and erythroid-restricted factors was dependent on maximal KLF-1 binding. Interestingly, the SCL/LMO2/Ldb1 complex was recruited first, consistent with the idea that this complex is required for LCR/promoter interaction. Interestingly, we have identified a direct protein-protein interaction between the carboxy terminal (aa221–396) domain of KLF1 (Δ221KLF1) and Ldb1, the factor implicated as critical for distal regulatory loci interactions at the β-globin locus. To dissect these events in vivo, we took advantage of a novel KLF1 knock-in strain (Δ221KLF1). In these animals, the endogenous KLF1 gene is replaced with a carboxy-terminal domain (aa221–396) expression cassette, resulting in DNA binding of the mutant factor, with β-globin chromatin remodeling. However, Δ221KLF1 fetal liver erythroblasts fail to activate the KLF1-dependent gene network, and have the identical differentiation defect characteristic of KLF1-null erythroblasts. Chromatin remodeling at the β-globin failed to result in recruitment of GATA-1, NF-E2, or the SCL/LMO2/Ldb1 complex. In contrast, ChIP analyses of the LCR in Δ221KLF1 erythroblasts revealed rescue of RNA Pol-II, GATA-1 and the SCL/LMO2/Ldb1 complex occupancy to wild type levels. Structural studies, utilizing the chromosome conformation capture (3C) assay, revealed that an incomplete re-configuration of the locus in Δ221 KLF1 mice. In conclusion, the chromatin remodeling domain of KLF1 is sufficient to reconfigure the LCR. However, KLF1-dependent Ldb1 recruitment at the LCR is insufficient to promote adequate communication between the two regulatory elements of the β-globin gene. Preliminary data suggest that an adjacent domain (aa163–221) is sufficient to rescue β-globin transcription in vivo. Together, these domains (aa163–396) are sufficient to promote the appropriate loading of transcription factors at the β-globin promoter in conjunction with locus structural re-configuration. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Rashika Joshi ◽  
Matthew R. Batie ◽  
Qiang Fan ◽  
Brian Michael Varisco

Most lung development occurs in the context of cyclic stretch. Alteration of the mechanical microenvironment is a common feature of many pulmonary diseases with congenital diaphragmatic hernia (CDH) and fetal tracheal occlusion (FETO, a therapy for CDH) being extreme examples with changes in lung structure, cell differentiation and function. To address limitations in cell culture and in vivo mechanotransductive models we developed two mouse lung organoid (mLO) mechanotransductive models using postnatal day 5 (PND5) mouse lung CD326-positive cells and fibroblasts subjected to increased, decreased, and cyclic strain. In the first model, mLOs were exposed to forskolin (FSK) and/or disrupted (DIS) and evaluated at 20 hours. mLO cross-sectional area changed by +59%, +24% and -68% in FSK, control, and DIS mLOs respectively. FSK-treated organoids had twice as many proliferating cells as other organoids. In the second model, 20 hours of 10.25% biaxial cyclic strain increased the mRNAs of lung mesenchymal cell lineages compared to static stretch and no stretch. Cyclic stretch increased TGF-β and integrin-mediated signaling with upstream analysis indicating roles for histone deacetylases, microRNAs, and long non-coding RNAs. Cyclic stretch mLOs increased αSMA- and αSMA-PDGFRα-double positive cells compared to no stretch and static stretch mLOs. In this PND5 mLO mechanotransductive model, cell proliferation is increased by static stretch, and cyclic stretch induces mesenchymal gene expression changes important in postnatal lung development.


2005 ◽  
Vol 98 (2) ◽  
pp. 732-738 ◽  
Author(s):  
Mark F. Banks ◽  
Evgenia V. Gerasimovskaya ◽  
Doug A. Tucker ◽  
Maria G. Frid ◽  
Todd C. Carpenter ◽  
...  

In most mammalian species, chronic exposure to hypoxia leads to pulmonary hypertension and vascular remodeling. The adventitial fibroblast, because of its ability to proliferate in response to hypoxia, is thought to be a critical cell in the remodeling process. However, the transcription factors driving hypoxia-induced fibroblast proliferation have yet to be elucidated. The early growth response-1 (Egr-1) transcription factor has been shown to be upregulated by hypoxia in pulmonary artery adventitial fibroblasts. We therefore hypothesized that Egr-1 is directly involved in hypoxia-induced adventitial fibroblast proliferation. Immunohistochemical analysis of in vivo lung tissue from animals exposed to chronic hypoxia revealed increased expression of Egr-1 in the pulmonary artery fibroblasts vs. expression shown in normoxic controls. In fibroblasts cultured from chronically hypoxic animals, exposure to 1% oxygen upregulated Egr-1 protein and cell proliferation. To evaluate the role of Egr-1 in hypoxia-induced proliferation, we employed an Egr-1 antisense strategy. Addition of antisense Egr-1 oligonucleotides, but not sense oligonucleotides, attenuated the hypoxia-induced upregulation of Egr-1 protein and reduced hypoxia-induced DNA synthesis by 50%. Cell proliferation was also significantly inhibited by the addition of antisense Egr-1 oligonucleotides but not the sense oligonucleotides. In addition, hypoxia-induced upregulations of cyclin D and epidermal growth factor receptor were attenuated by Egr-1 antisense oligonucleotides. We conclude that Egr-1 protein expression is very sensitive to upregulation by hypoxia in pulmonary artery adventitial fibroblasts and that it plays an important role in the autonomous growth phenotype induced by hypoxia in these cells.


1997 ◽  
Vol 272 (3) ◽  
pp. L486-L493 ◽  
Author(s):  
T. P. Stevens ◽  
J. T. McBride ◽  
J. L. Peake ◽  
K. E. Pinkerton ◽  
B. R. Stripp

Pulmonary neuroendocrine cells (PNECs) are airway epithelial cells that are capable of secreting a variety of neuropeptides. PNECs are scattered throughout the bronchial tree either as individual cells or clusters of cells termed neuroepithelial bodies (NEBs). PNECs and their secretory peptides have been considered to play a role in fetal lung development. Although the normal physiological function of PNECs and neuropeptides in normal adult lungs and in repair from lung injury is not known, PNEC hyperplasia has been associated with chronic lung diseases, such as bronchopulmonary dysplasia, and with chronic exposures, such as hypoxia, tobacco smoke, nitrosamines, and ozone. To evaluate changes in PNEC number and distribution after acute airway injury, FVB/n mice were treated with either naphthalene or vehicle. Naphthalene is an aromatic hydrocarbon that, at the dose used in this study, selectively destroys nonciliated bronchial epithelial cells (Clara cells) through cytochrome P-450-mediated metabolic activation into cytotoxic epoxides. PNECs were identified by immunohistochemical analysis of calcitonin gene-related peptide-like immunoreactivity (CGRP-IR). Proliferating cells were marked with [(3)H]thymidine incorporation. Acute naphthalene toxicity results in PNEC hyperplasia that is detectable after 5 days of recovery. PNEC hyperplasia is characterized by increased numbers of NEBs without significant changes in the number of isolated PNECs and by increased [(3)H]thymidine labeling of CGRP-IR cells. These data show that cell proliferation contributes to PNEC hyperplasia after acute airway injury and suggest that PNECs may be capable of more rapidly increasing their number in response to injury than previously recognized.


2009 ◽  
Vol 419 (3) ◽  
pp. 611-618 ◽  
Author(s):  
Jose L. Tomsig ◽  
Ashley H. Snyder ◽  
Evgeny V. Berdyshev ◽  
Anastasia Skobeleva ◽  
Chifundo Mataya ◽  
...  

LPA (lysophosphatidic acid) is a lipid mediator that stimulates cell proliferation and growth, and is involved in physiological and pathological processes such as wound healing, platelet activation, angiogenesis and the growth of tumours. Therefore defining the mechanisms of LPA production and degradation are of interest in understanding the regulation of these processes. Extracellular LPA synthesis is relatively well understood, whereas the mechanisms of its degradation are not. One route of LPA degradation is dephosphorylation. A candidate enzyme is the integral membrane exophosphatase LPP1 (lipid phosphate phosphohydrolase type 1). In the present paper, we report the development of a mouse wherein the LPP1 gene (Ppap2a) was disrupted. The homozygous mice, which are phenotypically unremarkable, generally lack Ppap2a mRNA, and multiple tissues exhibit a substantial (35–95%) reduction in LPA phosphatase activity. Compared with wild-type littermates, Ppap2atr/tr animals have increased levels of plasma LPA, and LPA injected intravenously is metabolized at a 4-fold lower rate. Our results demonstrate that LPA is rapidly metabolized in the bloodstream and that LPP1 is an important determinant of this turnover. These results indicate that LPP1 is a catabolic enzyme for LPA in vivo.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1936 ◽  
Author(s):  
Aide Negri ◽  
Valeria Naponelli ◽  
Federica Rizzi ◽  
Saverio Bettuzzi

Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.


1993 ◽  
Vol 13 (12) ◽  
pp. 7813-7825 ◽  
Author(s):  
J A Lees ◽  
M Saito ◽  
M Vidal ◽  
M Valentine ◽  
T Look ◽  
...  

E2F is a transcription factor that helps regulate the expression of a number of genes that are important in cell proliferation. Recently, several laboratories have isolated a cDNA clone that encodes an E2F-like protein, known as E2F-1. Subsequent characterization of this protein showed that it had the properties of E2F, but it was difficult to account for all of the suggested E2F activities through the function of this one protein. Using low-stringency hybridization, we have isolated cDNA clones that encode two additional E2F-like proteins, called E2F-2 and E2F-3. The chromosomal locations of the genes for E2F-2 and E2F-3 were mapped to 1p36 and 6q22, respectfully, confirming their independence from E2F-1. However, the E2F-2 and E2F-3 proteins are closely related to E2F-1. Both E2F-2 and E2F-3 bound to wild-type but not mutant E2F recognition sites, and they bound specifically to the retinoblastoma protein in vivo. Finally, E2F-2 and E2F-3 were able to activate transcription of E2F-responsive genes in a manner that was dependent upon the presence of at least one functional E2F binding site. These observations suggest that the E2F activities described previously result from the combined action of a family of proteins.


2015 ◽  
Vol 26 (13) ◽  
pp. 2475-2490 ◽  
Author(s):  
Galina Schevzov ◽  
Anthony J. Kee ◽  
Bin Wang ◽  
Vanessa B. Sequeira ◽  
Jeff Hook ◽  
...  

ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.


Sign in / Sign up

Export Citation Format

Share Document