Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria

Amino Acids ◽  
2010 ◽  
Vol 41 (5) ◽  
pp. 1233-1245 ◽  
Author(s):  
Angel L. Pey ◽  
Eduardo Salido ◽  
Jose M. Sanchez-Ruiz
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rishav Mitra ◽  
Varun V. Gadkari ◽  
Ben A. Meinen ◽  
Carlo P. M. van Mierlo ◽  
Brandon T. Ruotolo ◽  
...  

AbstractATP-independent chaperones are usually considered to be holdases that rapidly bind to non-native states of substrate proteins and prevent their aggregation. These chaperones are thought to release their substrate proteins prior to their folding. Spy is an ATP-independent chaperone that acts as an aggregation inhibiting holdase but does so by allowing its substrate proteins to fold while they remain continuously chaperone bound, thus acting as a foldase as well. The attributes that allow such dual chaperoning behavior are unclear. Here, we used the topologically complex protein apoflavodoxin to show that the outcome of Spy’s action is substrate specific and depends on its relative affinity for different folding states. Tighter binding of Spy to partially unfolded states of apoflavodoxin limits the possibility of folding while bound, converting Spy to a holdase chaperone. Our results highlight the central role of the substrate in determining the mechanism of chaperone action.


Author(s):  
Michael T. Ryan ◽  
Dean J. Naylor ◽  
Peter B. Høj ◽  
Margaret S. Clark ◽  
Nicholas J. Hoogenraad

1995 ◽  
Vol 15 (5) ◽  
pp. 2654-2662 ◽  
Author(s):  
J Rassow ◽  
K Mohrs ◽  
S Koidl ◽  
I B Barthelmess ◽  
N Pfanner ◽  
...  

We studied the role of mitochondrial cyclophilin 20 (CyP20), a peptidyl-prolyl cis-trans isomerase, in preprotein translocation across the mitochondrial membranes and protein folding inside the organelle. The inhibitory drug cyclosporin A did not impair membrane translocation of preproteins, but it delayed the folding of an imported protein in wild-type mitochondria. Similarly, Neurospora crassa mitochondria lacking CyP20 efficiently imported preproteins into the matrix, but folding of an imported protein was significantly delayed, indicating that CyP20 is involved in protein folding in the matrix. The slow folding in the mutant mitochondria was not inhibited by cyclosporin A. Folding intermediates of precursor molecules reversibly accumulated at the molecular chaperones Hsp70 and Hsp60 in the matrix. We conclude that CyP20 is a component of the mitochondrial protein folding machinery and that it cooperates with Hsp70 and Hsp60. It is speculated that peptidyl-prolyl cis-trans isomerases in other cellular compartments may similarly promote protein folding in cooperation with chaperone proteins.


2017 ◽  
Vol 112 (3) ◽  
pp. 15a
Author(s):  
Silvia Cavagnero ◽  
Rayna M. Addabbo ◽  
Matthew D. Dalphin ◽  
Yue Liu ◽  
Miranda F. Mecha

1976 ◽  
Vol 29 (6) ◽  
pp. 405 ◽  
Author(s):  
EF Woods

The stability to denaturation by heat and guanidine hydrochloride of seven vertebrate (including skeletal, cardiac and smooth muscle) tropomyosins and three invertebrate tropomyosins was examined. The transition profiles were discontinuous and in many cases distinct plateaux were observed which indicated the presence of unique partially unfolded states at intermediate temperatures and guanidine hydrochloride concentrations. The denaturation by guanidine hydrochloride could be described in the majority of cases by a model in which the native state unfolds to a partially unfolded stable intermediate which then unfolds to the completely denatured state. On this basis it was possible to estimate the free energies of unfolding in water. It was shown that part of the IX-helical structure of tropomyosin is only marginally stable and the free energy of unfolding in water of this segment is less than values found for globular proteins, whereas another segment (or segments) has a stability comparable to that found for globular proteins. The stepwise unfolding may be explained in terms of the coiled-coil interactions in tropomyosin.


BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 182 ◽  
Author(s):  
Massimo Malerba ◽  
Raffaella Cerana

Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO−) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO− scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO− in the FC-induced responses. In particular, ONOO− seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


Sign in / Sign up

Export Citation Format

Share Document