scholarly journals Geometrical parameters of binary granular mixtures with size ratio and volume fraction: experiments and DEM simulations

2016 ◽  
Vol 18 (3) ◽  
Author(s):  
J. Wiącek
2021 ◽  
pp. 152808372110013
Author(s):  
Vivek R Jayan ◽  
Lekhani Tripathi ◽  
Promoda Kumar Behera ◽  
Michal Petru ◽  
BK Behera

The internal geometry of composite material is one of the most important factors that influence its performance and service life. A new approach is proposed for the prediction of internal geometry and tensile behavior of the 3 D (three dimensional) woven fabrics by creating the unit cell using mathematical coding. In many technical applications, textile materials are subjected to rates of loading or straining that may be much greater in magnitude than the regular household applications of these materials. The main aim of this study is to provide a generalized method for all the structures. By mathematical coding, unit cells of 3 D woven orthogonal, warp interlock and angle interlock structures have been created. The study then focuses on developing code to analyze the geometrical parameters of the fabric like fabric thickness, areal density, and fiber volume fraction. Then, the tensile behavior of the coded 3 D structures is studied in Ansys platform and the results are compared with experimental values for authentication of geometrical parameters as well as for tensile behavior. The results show that the mathematical coding approach is a more efficient modeling technique with an acceptable error percentage.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 664 ◽  
Author(s):  
Ammar Alsabery ◽  
Muneer Ismael ◽  
Ali Chamkha ◽  
Ishak Hashim

This numerical study considers the mixed convection and the inherent entropy generated in Al 2 O 3 –water nanofluid filling a cavity containing a rotating conductive cylinder. The vertical walls of the cavity are wavy and are cooled isothermally. The horizontal walls are thermally insulated, except for a heat source segment located at the bottom wall. The dimensionless governing equations subject to the selected boundary conditions are solved numerically using the Galerkin finite-element method. The study is accomplished by inspecting different ranges of the physical and geometrical parameters, namely, the Rayleigh number ( 10 3 ≤ R a ≤ 10 6 ), angular rotational velocity ( 0 ≤ Ω ≤ 750 ), number of undulations ( 0 ≤ N ≤ 4 ), volume fraction of Al 2 O 3 nanoparticles ( 0 ≤ ϕ ≤ 0.04 ), and the length of the heat source ( 0.2 ≤ H ≤ 0.8 ) . The results show that the rotation of the cylinder boosts the rate of heat exchange when the Rayleigh number is less than 5 × 10 5 . The number of undulations affects the average Nusselt number for a still cylinder. The rate of heat exchange increases with the volume fraction of the Al 2 O 3 nanoparticles and the length of the heater segment.


2017 ◽  
Vol 22 (1) ◽  
pp. 3-27 ◽  
Author(s):  
Reza Kolahchi ◽  
Behrooz Keshtegar ◽  
Mohammad Hosein Fakhar

Optimization of embedded piezoelectric sandwich nanocomposite plates for dynamic buckling analysis is presented in this work based on Grey Wolf algorithm. The Grey Wolf algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. In addition, the main steps of hunting, searching for prey, encircling prey, and attacking prey are employed. The structure is composed of a laminated functionally graded-carbon nanotubes reinforced layers as core integrated with sensor and actuator layers considering structural damping effects. Two-dimensional magnetic and 3D electric fields are applied to core and piezoelectric layers, respectively. Sinusoidal shear deformation theory is utilized for obtaining the motion equations and differential quadrature method is applied for solution. Also, a proportional–derivative controller is employed to control the dynamic behavior of the structure. Finally, the optimum designs for the structure are evaluated using proposed Grey Wolf algorithm based on the geometrical parameters of plate, applied voltage, controller parameters, volume fraction of carbon nanotubes, spring, and shear constants of foundation. Numerical results indicate that by applying the positive voltage and transverse magnetic field the optimum dimensionless frequency of the system decreases.


Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Vu Minh Duc

Nonlinear buckling and postbuckling of orthogonal carbon nanotube-reinforced composite (Orthogonal CNTRC) cylindrical shells subjected to axial compression in thermal environments surrounded by elastic foundation are presented in this paper. Two layers of shell are reinforced by carbon nanotube (CNT) in two orthogonal directions (longitudinal and circumferential directions). Based on Donnell’s shell theory with von Karman’s nonlinearity and the Galerkin method, the governing equations are established to obtain the critical buckling loads and postbuckling load-deflection curves. The large effects of CNT volume fraction, temperature change, elastic foundation and geometrical parameters of cylindrical shells on the buckling load and postbuckling behavior of Orthogonal CNTRC cylindrical shells are obtained.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950052 ◽  
Author(s):  
Ali Ghorbanpour Arani ◽  
Farhad Kiani ◽  
Hassan Afshari

This paper presents a parametric study on aeroelastic stability analysis of multi-layered functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical panels subjected to a yawed supersonic flow. The panel is considered to be composed of different layers reinforced by carbon nanotubes arranged in different directions with various patterns and different volume fractions. Reddy’s third-order shear deformation theory (TSDT) is employed to model the structure and external pressure is estimated based on the linear supersonic piston theory. The set of governing equations and boundary conditions are derived using Hamilton’s principle and are solved numerically using generalized differential quadrature method (GDQM). Convergence and accuracy of the presented solution are confirmed and effect of volume fraction, distributions and orientation of carbon nanotubes (CNTs), yaw angle and geometrical parameters of the panel on the flutter boundaries are investigated. Results of this paper can be considered as a useful tool in design and analysis of supersonic airplanes and missiles.


2008 ◽  
Vol 47-50 ◽  
pp. 608-611 ◽  
Author(s):  
Seyyed Mohammad Reza Khalili ◽  
K. Malekzadeh ◽  
A. Davar

In this paper the response of circular cylindrical shell made of Functionally Graded Material (FGM) subjected to lateral impulse load was investigated. The effective material properties are assumed to vary continuously along the thickness direction according to a volume fraction power law distribution. First order shear deformation theory (FSDT) and Love's first approximation theory were utilized in the equilibrium equations. The boundary condition was considered to be simply supported. Displacement components are product of functions of position and time. Equilibrium equations for free and forced vibrations were solved using the Galerkin method. The impulse load in the form of time varying uniform pressure was applied onto a small rectangular area of the shell surface. The function of time for displacement components is obtained using the results of free vibration and convolution integral. Finally time response of displacement components is derived using mode superposition method. The influence of material composition (power law exponent), geometrical parameters (length to radius and radius to thickness ratios) and load parameters (position and size of the area of the applied load and peak pressure value for different pulse type) on the dynamic response was investigated.


Author(s):  
Hongyi Xiao ◽  
Paul B. Umbanhowar ◽  
Julio M. Ottino ◽  
Richard M. Lueptow

Preventing segregation in flowing granular mixtures is an ongoing challenge for industrial processes that involve the handling of bulk solids. A recent continuum-based modelling approach accurately predicts spatial concentration fields in a variety of flow geometries for mixtures varying in particle size. This approach captures the interplay between advection, diffusion and segregation using kinematic information obtained from experiments and/or discrete element method (DEM) simulations combined with an empirically determined relation for the segregation velocity. Here, we extend the model to include density-driven segregation, thereby validating the approach for the two important cases of practical interest. DEM simulations of density bidisperse flows of mono-sized particles in a quasi-two-dimensional-bounded heap were performed to determine the dependence of the density-driven segregation velocity on local shear rate and particle concentration. The model yields theoretical predictions of segregation patterns that quantitatively match the DEM simulations over a range of density ratios and flow rates. Matching experiments reproduce the segregation patterns and quantitative segregation profiles obtained in both the simulations and the model, thereby demonstrating that the modelling approach captures the essential physics of density-driven segregation in granular heap flow.


2016 ◽  
Vol 809 ◽  
pp. 601-627 ◽  
Author(s):  
Ayse Yuksel-Ozan ◽  
George Constantinescu ◽  
Heidi Nepf

Large eddy simulation (LES) is used to study the evolution and structure of a lock-exchange, Boussinesq gravity current forming in a channel partially blocked by a porous layer. This configuration is used to understand how the characteristics of a surface layer containing floating vegetation affects the generation of thermally driven convective water exchange in a long shallow channel. The porous layer, which represents the roots of the floating vegetation, contains a staggered array of rigid square cylinders of edge length $D$ with solid volume fraction $\unicode[STIX]{x1D719}$. The cylinders extend over a depth $h_{1}<H$ below the free surface, where $H$ is the channel depth. The surface current of lighter fluid splits into two layers, one propagating slowly inside the porous layer and the other flowing beneath the porous layer. The main geometrical parameters of the porous layer, $\unicode[STIX]{x1D719}$ and $h_{1}/H$, have a large effect on the dynamics and structure of the surface current and the temporal variation of the front position. For cases with sufficiently large values of $h_{1}/H$ and $\unicode[STIX]{x1D719}$, the front within the porous layer approaches the triangular shape observed for low Reynolds number lock-exchange currents propagating in a channel containing cylinders over its whole volume ($h_{1}/H=1$), and the surface current transitions to a drag-dominated regime in which the front velocity is proportional to $t^{-1/4}$, where $t$ is the time since the current is initiated. For sufficiently high values of $\unicode[STIX]{x1D719}$, the velocity of the fluid inside the porous layer is close to zero at all locations except for those situated close to the lock gate and for some distance behind the front. Close to the front, lighter fluid from below penetrates into the porous layer due to unstable stratification at the bottom of the porous layer. Simulation results are also used to assess how $\unicode[STIX]{x1D719},h_{1}/H$ and the Reynolds number affect the rate at which the heavier fluid situated initially inside the porous layer is removed by the advancing surface current and the main mixing mechanisms. Based on the estimated time scales for flushing the porous (root) layer, we show that flushing can significantly enhance the overall rate of nutrient removal by the floating vegetation by maintaining a higher concentration of nutrients within the root layer.


Soft Matter ◽  
2020 ◽  
Vol 16 (39) ◽  
pp. 9094-9100
Author(s):  
Salvatore Pillitteri ◽  
Eric Opsomer ◽  
Geoffroy Lumay ◽  
Nicolas Vandewalle

For reaching high packing fractions, grains of various sizes are often mixed together allowing the small grains to fill the voids created by the large ones. However, in most cases, granular segregation occurs leading to lower packing fractions. We show how a layered packing or a gradient segregation affects the global packing fraction.


Sign in / Sign up

Export Citation Format

Share Document