A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management

2009 ◽  
Vol 17 (7) ◽  
pp. 1629-1641 ◽  
Author(s):  
I. P. Holman ◽  
D. Tascone ◽  
T. M. Hess
2021 ◽  
Author(s):  
Yvan Caballero ◽  
Sandra Lanini ◽  
Pierre Le Cointe ◽  
Stéphanie Pinson ◽  
Guillaume Hevin ◽  
...  

<p>Climate change is expected to have a significant impact on water resources in mountain areas, as it is the case of the Pyrenees range between France, Spain and Andorre. Independently of future changes on rainfall patterns, global temperature rise is likely to provoke larger and earlier snowmelt, and enhanced precipitation deficits during the dry summer season. Exploring the impacts of this future situation on groundwater is essential, as this resource is often important for drinking water, irrigation and breeding uses in mountain regions. However, studies on groundwater recharge in the context of climate change are relatively scarce, as compared to studies focusing on surface water resources.</p><p>We assessed potential groundwater recharge (part of effective precipitation that infiltrates and potentially reach the aquifers) over the Pyrenean range in the framework of the PIRAGUA project, a collaborative multi-national effort funded by the EU’s Interreg POCTEFA program. Based on a gridded (5x5 km²) meteorological dataset derived from observational data by the CLIMPY project, we estimated effective precipitation for each grid cell using a conceptual water balance scheme. The effect of the seasonal change of land cover / land use (based on the Corine Land Cover dataset) on the water budget model has been assessed, and showed the need to include this component for a more accurate simulation. Based on a spatial characterization of the land infiltration capacity, the potential groundwater recharge has been computed for homogeneous groundwater bodies. Results have been compared to the outputs of groundwater models applied on selected karstic catchments using the BALAN code, and to a general knowledge of groundwater recharge rates for different regions within the study zone. Finally, climate change impacts on future IDPR have been explored using scenarios provided by the CLIMPY project.</p><p>The Pyrenees range is a hot-spot for water resources with a tremendous impact over a much broader region in SW Europe, as Pyrenean rivers are fundamental contributors to large systems such as those of the Adour and Garonne (France) or Ebro (Spain), as well as smaller systems in the western and eastern sectors such as the Bidasoa (Spanish Basque Country), Llobregat-Ter-Muga (Catalonia), or Têt-Tech-Aude (France). Our results are relevant for the planning and management of water resources for this important transboundary region in the future, as changes in groundwater recharge will also affect water resources availability.</p><p>Acknowledgments: the project PIRAGUA, is funded by the European Regional Development Fund (ERDF) through the Interreg V-A Spain France Andorra programme (POCTEFA 2014-2020).</p>


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 364 ◽  
Author(s):  
Jesús Guerrero-Morales ◽  
Carlos R. Fonseca ◽  
Miguel A. Goméz-Albores ◽  
María Laura Sampedro-Rosas ◽  
Sonia Emilia Silva-Gómez

This work proposes a methodology whereby the selection of hydrologic and land-use cover change (LUCC) models allows an assessment of the proportional variation in potential groundwater recharge (PGR) due to both land-use cover change (LUCC) and some climate change scenarios for 2050. The simulation of PGR was made through a distributed model, based on empirical methods and the forecasting of LUCC stemming from a supervised classification with remote sensing techniques, both inside a Geographic Information System. Once the supervised classification was made, a Markov-based model was developed to predict LUCC to 2050. The method was applied in Acapulco, an important tourism center for Mexico. From 1986 to 2017, the urban area increased 5%, and by 2050 was predicted to cover 16%. In this period, a loss of 7 million m3 of PGR was assumed to be caused by the estimated LUCC. From 2017 to 2050, this loss is expected to increase between 73 and 273 million m3 depending on the considered climate change scenario, which is the equivalent amount necessary for satisfying the water needs of 6 million inhabitants. Therefore, modeling the variation in groundwater recharge can be an important tool for identifying water vulnerability, through both climate and land-use change.


2019 ◽  
Vol 8 ◽  
pp. 332-345 ◽  
Author(s):  
D.O. Yawson ◽  
M.O. Adu ◽  
B. Mulholland ◽  
T. Ball ◽  
K.A. Frimpong ◽  
...  

2020 ◽  
Author(s):  
Yvan Caballero ◽  
Sandra Lanini ◽  
Guillaume Hevin ◽  
Pierre Le Cointe ◽  
Stéphanie Pinson ◽  
...  

<p>The Pyrenees range is a transboundary region shared by Spain, France and Andorre whose water resources are diverse (snowmelt and rainfall runoff in a topographically variable context, groundwater in complex and heterogeneous aquifers) and poorly known. As many other mountain regions, this territory is particularly vulnerable to the impacts of climate change. In the framework of the PIRAGUA project, funded by FEDER through the EU POCTEFA Program, the potential groundwater recharge from precipitation was estimated over the last 30 years at the scale of the Pyrenean range.</p><p> </p><p>Using the meteorological forcing data provided at high spatial resolution in the framework of the PIRAGUA Project, the effective rainfall was computed at the daily time step using three different simple water balance methods, including land use effect on evapotranspiration (crop coefficients method) over the 1981-2010 period. Resulting effective precipitation ranges from 50 to more than 2000 mm/year on average and shows strong differences between the east and west sides of the Pyrenean chain.</p><p> </p><p>Potential groundwater recharge from precipitation was then estimated using an effective precipitation infiltration ratio derived from the comparison of the IDPR geomorphological index to the baseflow index extracted from selected river discharge time series over the Pyrenees. The resulting potential recharge was finally averaged at the groundwater bodies’ scale of the Pyrenean chain.</p><p> </p><p>Corresponding potential groundwater resources were finally compared to groundwater uses estimated at the Pyrenean scale in order to 1) assess their respective importance in relation to water uses and 2) identify the sectors of the territory for which situations of tension on groundwater resources could already be observed, tensions which are likely to increase in the context of climate change.</p><p> </p>


2007 ◽  
Vol 22 (1) ◽  
pp. 73-86 ◽  
Author(s):  
M. Herrera-Pantoja ◽  
K. M. Hiscock

2014 ◽  
Author(s):  
Patricia L. Winter ◽  
Susan Charnley ◽  
Jonathan W. Long ◽  
Frank K. Lake ◽  
Trista M. Patterson

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1153
Author(s):  
Shih-Jung Wang ◽  
Cheng-Haw Lee ◽  
Chen-Feng Yeh ◽  
Yong Fern Choo ◽  
Hung-Wei Tseng

Climate change can directly or indirectly influence groundwater resources. The mechanisms of this influence are complex and not easily quantified. Understanding the effect of climate change on groundwater systems can help governments adopt suitable strategies for water resources. The baseflow concept can be used to relate climate conditions to groundwater systems for assessing the climate change impact on groundwater resources. This study applies the stable baseflow concept to the estimation of the groundwater recharge in ten groundwater regions in Taiwan, under historical and climate scenario conditions. The recharge rates at the main river gauge stations in the groundwater regions were assessed using historical data. Regression equations between rainfall and groundwater recharge quantities were developed for the ten groundwater regions. The assessment results can be used for recharge evaluation in Taiwan. The climate change estimation results show that climate change would increase groundwater recharge by 32.6% or decrease it by 28.9% on average under the climate scenarios, with respect to the baseline quantity in Taiwan. The impact of climate change on groundwater systems may be positive. This study proposes a method for assessing the impact of climate change on groundwater systems. The assessment results provide important information for strategy development in groundwater resources management.


Sign in / Sign up

Export Citation Format

Share Document