scholarly journals Robustness and static-positional accuracy of the SteamVR 1.0 virtual reality tracking system

2021 ◽  
Author(s):  
Lucia Grazia Sansone ◽  
Ronny Stanzani ◽  
Mirko Job ◽  
Simone Battista ◽  
Alessio Signori ◽  
...  

AbstractThe use of low-cost immersive virtual reality systems is rapidly expanding. Several studies started to analyse the accuracy of virtual reality tracking systems, but they did not consider in depth the effects of external interferences in the working area. In line with that, this study aimed at exploring the static-positional accuracy and the robustness to occlusions inside the capture volume of the SteamVR (1.0) tracking system. To do so, we ran 3 different tests in which we acquired the position of HTC Vive PRO Trackers (2018 version) on specific points of a grid drawn on the floor, in regular tracking conditions and with partial and total occlusions. The tracking system showed a high inter- and intra-rater reliability and detected a tilted surface with respect to the floor plane. Every acquisition was characterised by an initial random offset. We estimated an average accuracy of 0.5 ± 0.2 cm across the entire grid (XY-plane), noticing that the central points were more accurate (0.4 ± 0.1 cm) than the outer ones (0.6 ± 0.1 cm). For the Z-axis, the measurements showed greater variability and the accuracy was equal to 1.7 ± 1.2 cm. Occlusion response was tested using nonparametric Bland–Altman statistics, which highlighted the robustness of the tracking system. In conclusion, our results promote the SteamVR system for static measures in the clinical field. The computed error can be considered clinically irrelevant for exercises aimed at the rehabilitation of functional movements, whose several motor outcomes are generally measured on the scale of metres.

Author(s):  
Nathan D. Darnall ◽  
Vinay Mishra ◽  
Sankar Jayaram ◽  
Uma Jayaram

Virtual reality (VR) technologies and systems have the potential to play a key role in assisting disabled inhabitants of smart home environments with instrumental activities of daily living (IADLs). While immersive environments have useful applications in the fields of gaming, simulation, and manufacturing, their capabilities have been largely untapped in smart home environments. We have developed an integrated CAD and virtual reality system which assists a smart home resident in locating and navigating to objects in the home. Using the methods presented in this paper, a room modeled in a CAD system is imported into a virtual environment, which is linked to an audio query-response interface. The user’s head and room objects are fitted with the sensors which are part of a six DOF motion tracking system. Methods have been created to allow the inhabitant to move objects around in the room and then later issue an audio query for the location of the object. The system generates an audio response with the object’s position relative to the person’s current position and orientation. As he approaches the object, information is derived from the virtual models of both the room and the objects within the room to provide better guidance. The ability of the VR-SMART system to guide a resident to an object was tested by mounting a head mounted display (HMD) on a user located in a room. This allowed the user to navigate through the virtual world that simulated the room he occupied, thereby providing a way to test the positional accuracy of the virtual system. Results of the testing in the immersive environment showed that although the overall system shows promise at a 30% success rate, the success of the system depends on the accuracy and calibration of the tracking system. In order to improve the success of the system, we explored the precision of a second motion capture system, with more accurate results. Results confirmed that the VR-SMART system could significantly improve the assistance of disabled people in finding objects easily in the room when implemented only as an assistive system without the head-mounted display.


2020 ◽  
Vol 12 (2) ◽  
pp. 61
Author(s):  
Marcin Maciejewski ◽  
Marek Piszczek ◽  
Mateusz Pomianek ◽  
Norbert Pałka

We present test results of an authorial tracking device developed in the SteamVR system, optimized for use in a missile launcher shooting simulator. Data for analysis was collected using the virtual reality training application, with the launcher set on a stable tripod and held by a trainee who executed two scenarios with static and movable targets. The analysis of experimental data confirms that the SteamVR system together with the developed tracker can be successfully implemented in the virtual shooting simulator. Full Text: PDF ReferencesD. Bogatinov, P. Lameski, V. Trajkovik, K.M. Trendova, "Firearms training simulator based on low cost motion tracking sensor", Multimed. Tools Appl. 76(1) (2017) CrossRef D.C. Niehorster, L. Li, M. Lappe, "The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research", Iperception. 8(3) (2017) CrossRef A. Yates, J. Selan, POSITIONAL TRACKING SYSTEMS AND METHODS. US20160131761A1, (2016) DirectLink P. Caserman, A. Garcia-Agundez, R. Konrad, S. Göbel, R. Steinmetz, Virtual Real. 23(2) (2019) 155-68. CrossRef


Author(s):  
Ryan A. Pavlik ◽  
Judy M. Vance

Virtual reality (VR) environments based on interactive rendering of 3D computer graphics often incorporate the use of position and orientation tracking on the user’s head, hands, and control devices. The Wii Remote game controller is a mass-market peripheral that can provide a low-cost source of infrared point tracking and accelerometer data, making it attractive as a PC-based virtual reality head tracking system. This paper describes the development of an extension to the Virtual Reality Peripheral Network (VRPN) software to support the use of the Wii Remote game controller as a standard tracker object in a wide range of VR software applications. This implementation permits Wii Remote-based head tracking to directly substitute for more costly commercial trackers through the VRPN and VR Juggler Gadgeteer tracker interfaces. The head tracker provides up to 100Hz of head tracking input. It has been tested in a variety of VR applications on both Windows and Linux. The discussed solution has been released as open-source software.


2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110248
Author(s):  
Miaoyu Li ◽  
Zhuohan Jiang ◽  
Yutong Liu ◽  
Shuheng Chen ◽  
Marcin Wozniak ◽  
...  

Physical health diseases caused by wrong sitting postures are becoming increasingly serious and widespread, especially for sedentary students and workers. Existing video-based approaches and sensor-based approaches can achieve high accuracy, while they have limitations like breaching privacy and relying on specific sensor devices. In this work, we propose Sitsen, a non-contact wireless-based sitting posture recognition system, just using radio frequency signals alone, which neither compromises the privacy nor requires using various specific sensors. We demonstrate that Sitsen can successfully recognize five habitual sitting postures with just one lightweight and low-cost radio frequency identification tag. The intuition is that different postures induce different phase variations. Due to the received phase readings are corrupted by the environmental noise and hardware imperfection, we employ series of signal processing schemes to obtain clean phase readings. Using the sliding window approach to extract effective features of the measured phase sequences and employing an appropriate machine learning algorithm, Sitsen can achieve robust and high performance. Extensive experiments are conducted in an office with 10 volunteers. The result shows that our system can recognize different sitting postures with an average accuracy of 97.02%.


Author(s):  
Wilver Auccahuasi ◽  
Mónica Diaz ◽  
Fernando Sernaque ◽  
Edward Flores ◽  
Justiniano Aybar ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1378
Author(s):  
Seung Hyun Lee ◽  
Jaeho Son

It has been pointed out that the act of carrying a heavy object that exceeds a certain weight by a worker at a construction site is a major factor that puts physical burden on the worker’s musculoskeletal system. However, due to the nature of the construction site, where there are a large number of workers simultaneously working in an irregular space, it is difficult to figure out the weight of the object carried by the worker in real time or keep track of the worker who carries the excess weight. This paper proposes a prototype system to track the weight of heavy objects carried by construction workers by developing smart safety shoes with FSR (Force Sensitive Resistor) sensors. The system consists of smart safety shoes with sensors attached, a mobile device for collecting initial sensing data, and a web-based server computer for storing, preprocessing and analyzing such data. The effectiveness and accuracy of the weight tracking system was verified through the experiments where a weight was lifted by each experimenter from +0 kg to +20 kg in 5 kg increments. The results of the experiment were analyzed by a newly developed machine learning based model, which adopts effective classification algorithms such as decision tree, random forest, gradient boosting algorithm (GBM), and light GBM. The average accuracy classifying the weight by each classification algorithm showed similar, but high accuracy in the following order: random forest (90.9%), light GBM (90.5%), decision tree (90.3%), and GBM (89%). Overall, the proposed weight tracking system has a significant 90.2% average accuracy in classifying how much weight each experimenter carries.


2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking > north-south Earth’s axis tracking > north-south tilt tracking (β = 15°) > north-south tilt tracking (β = 45) > north-south horizontal tracking > east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


Sign in / Sign up

Export Citation Format

Share Document