Modulation of cancer cell proliferation by cell survival signal Akt and tumor suppressive energy sensor AMP-activated protein kinase in colon cancer cells treated with resveratrol

2010 ◽  
Vol 19 (6) ◽  
pp. 1537-1541 ◽  
Author(s):  
Song Yi Park ◽  
Ock Jin Park
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengbin Chai ◽  
Li Wang ◽  
Yabing Zheng ◽  
Na Liang ◽  
Xiwei Wang ◽  
...  

Abstract Background CKS1 is highly expressed in colon cancer tissues, and is essential for cancer cell proliferation. The downstream molecular mechanism of CKS1 has been fully studied, but the upstream regulatory mechanism of it is still unclear. Earlier research found that PADI3 plays its anti-tumor roles via suppress cell proliferation, in this study, we found that the expression pattern of PADI3 and CKS1 are negatively correlated in colon cancer tissues, and overexpression of PADI3 can partly reverse CKS1 induced cancer cell proliferation. However, the regulatory mechanism of PADI3 and CKS1 in the tumorigenesis of colon cancer is still unclear and need to do further research. Methods Western blot and real-time PCR were used to detect the expression levels of genes. CCK-8 and colony formation assays were used to examine cell proliferation and colony formation ability. Overexpression and rescue experiments were used to study the molecular mechanism of CKS1 in colon cancer cells, BALB/c nude mice were used to study the function of CKS1 in vivo. Results CKS1 is highly expressed in colon cancer tissues, and the overexpression of CKS1 promotes cell proliferation and colony formation in both HCT116 (originating from primary colon cancer) and SW620 (originating from metastatic tumor nodules of colon cancer) cells. CKS1-expressing HCT116 cells produced larger tumors than the control cells. The expression pattern of PADI3 and CKS1 are negatively correlation in clinical samples of colon cancer, further study indicates that PADI3 can significantly decrease Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to downregulate CKS1expression in colon cancer cells. Conclusions PADI3 exerts its antitumor activity by inhibiting Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to suppress CKS1 expression.


2014 ◽  
Vol 33 (1) ◽  
pp. 223-229 ◽  
Author(s):  
HAK-SU KIM ◽  
JIHYUN LIM ◽  
DA YEON LEE ◽  
JAE-HA RYU ◽  
JONG-SEOK LIM

2018 ◽  
Vol 293 (21) ◽  
pp. 8242-8254 ◽  
Author(s):  
Premila D. Leiphrakpam ◽  
Michael G. Brattain ◽  
Jennifer D. Black ◽  
Jing Wang

Aberrant cell survival plays a critical role in cancer progression and metastasis. We have previously shown that ezrin, a cAMP-dependent protein kinase A–anchoring protein (AKAP), is up-regulated in colorectal cancer (CRC) liver metastasis. Phosphorylation of ezrin at Thr-567 activates ezrin and plays an important role in CRC cell survival associated with XIAP and survivin up-regulation. In this study, we demonstrate that in FET and GEO colon cancer cells, knockdown of ezrin expression or inhibition of ezrin phosphorylation at Thr-567 increases apoptosis through protein kinase A (PKA) activation in a cAMP-independent manner. Transforming growth factor (TGF) β signaling inhibits ezrin phosphorylation in a Smad3-dependent and Smad2-independent manner and regulates pro-apoptotic function through ezrin-mediated PKA activation. On the other hand, ezrin phosphorylation at Thr-567 by insulin-like growth factor 1 receptor (IGF1R) signaling leads to cAMP-dependent PKA activation and enhances cell survival. Further studies indicate that phosphorylated ezrin forms a complex with PKA RII, and dephosphorylated ezrin dissociates from the complex and facilitates the association of PKA RII with AKAP149, both of which activate PKA yet lead to either cell survival or apoptosis. Thus, our studies reveal a novel mechanism of differential PKA activation mediated by TGFβ and IGF1R signaling through regulation of ezrin phosphorylation in CRC, resulting in different cell fates. This is of significance because TGFβ and IGF1R signaling pathways are well-characterized tumor suppressor and oncogenic pathways, respectively, with important roles in CRC tumorigenesis and metastasis. Our studies indicate that they cross-talk and antagonize each other's function through regulation of ezrin activation. Therefore, ezrin may be a potential therapeutic target in CRC.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Hsin-Wu Lai ◽  
James Cheng-Chung Wei ◽  
Hung-Chang Hung ◽  
Chun-Che Lin

Background. Adenine is involved in a variety of cell biological processes and has been explored for pharmacological uses. Its therapeutic use for managing cancer is of great interest. In the present study, we investigated the anticancer effects of adenine and the underlying mechanism in colon cancer cells. Methods. Cell viability was measured using the MTT assay. Levels of phosphorylation and protein expression were determined using western blotting. qPCR was carried out to determine the changes in mRNA expression of genes of interest. Results. Adenine significantly inhibited the viability of colon cancer cells, HT29 and Caco-2 cells, in a dose-dependent manner. Adenine induced significant apoptosis in HT29 cells, whereas Caco-2 cells exhibited less apoptotic responses. The data showed that adenine activated AMP-activated protein kinase (AMPK) signaling contributing to autophagic cell death through mTOR in both colon cancer cell lines. Conclusions. Our findings suggest that adenine inhibits the growth of colon cancer cells. Anticancer activity of adenine in colon cancer cells is attributable to the activation of apoptotic signaling and in turn the AMPK/mTOR pathway. Adenine represents a natural compound with anticancer potency.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ronghong Liu ◽  
Wenzeng Zhao ◽  
Haigang Wang ◽  
Jianbing Wang

Increasing study has validated that long noncoding RNAs (lncRNAs) are involved in the growth and metastasis of colon cancer. LINC01207 has been reported to play vital roles in certain types of cancer, while the precise function of LINC01207 in the progression of colon cancer remains unclear. The objective of this study was to investigate the effect of LINC01207 on the growth and metastasis of colon cancer cells and to explore the underlying mechanism. We found that the expression of LINC01207 was significantly upregulated in colon adenocarcinoma tissues compared with normal tissues by the GEPIA database. Notably, silencing of LINC01207 significantly suppressed the proliferation, migration, and invasion abilities of SW480 and HT-29 cells. Mechanistically, our data demonstrated that LINC01207 could sponge miR-3125 in colon cancer cells. Moreover, miR-3125 could directly target TRIM22 and negatively regulate its expression. Rescue assays revealed that miR-3125 inhibitor or TRIM22 overexpression significantly reversed the repressive role of LINC01207 knockdown in colon cancer cell proliferation and invasion. In conclusion, LINC01207 exerts an oncogenic role in the progression of colon cancer by absorbing miR-3125 to modulating TRIM22 expression.


Sign in / Sign up

Export Citation Format

Share Document