scholarly journals Effect of Linear and Ring-like Co-units on the Temperature Dependence of Nucleation and Growth in II-I Phase Transition of Butene-1 Copolymers

2018 ◽  
Vol 36 (11) ◽  
pp. 1269-1276 ◽  
Author(s):  
Ya-Hui Lou ◽  
Yi-Long Liao ◽  
Li Pan ◽  
Bin Wang ◽  
Yue-Sheng Li ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
pp. 65-78
Author(s):  
Bratati Das ◽  
Ashis Bhattacharjee

Background: Melting of a pure crystalline material is generally treated thermodynamically which disregards the dynamic aspects of the melting process. According to the kinetic phenomenon, any process should be characterized by activation energy and preexponential factor where these kinetic parameters are derivable from the temperature dependence of the process rate. Study on such dependence in case of melting of a pure crystalline solid gives rise to a challenge as such melting occurs at a particular temperature only. The temperature region of melting of pure crystalline solid cannot be extended beyond this temperature making it difficult to explore the temperature dependence of the melting rate and consequently the derivation of the related kinetic parameters. Objective: The present study aims to explore the mechanism of the melting process of maleic anhydride in the framework of phase transition models. Taking this process as just another first-order phase transition, occurring through the formation of nuclei of new phase and their growth, particular focus is on the nucleation and growth models. Methods: Non-isothermal thermogravimetry, as well as differential scanning calorimetry studies, has been performed. Using isoconversional kinetic analysis, temperature dependence of the activation energy of melting has been obtained. Nucleation and growth models have been utilized to obtain the theoretical temperature dependencies for the activation energy of melting and these dependencies are then compared with the experimentally estimated ones. Conclusion: The thermogravimetry study indicates that melting is followed by concomitant evaporation, whereas the differential scanning calorimetry study shows that the two processes appear in two different temperature regions, and these differences observed may be due to the applied experimental conditions. From the statistical analysis, the growth model seems more suitable than the nucleation model for the interpretation of the melting mechanism of the maleic anhydride crystals.


1992 ◽  
Vol 47 (1-2) ◽  
pp. 177-181 ◽  
Author(s):  
Shi-Qi Dou ◽  
Alarich Weiss

AbstractThe two line 35Cl NQR spectrum of 4,5-dichloroimidazole was measured in the temperature range 77≦ T/K ≦ 389. The temperature dependence of the NQR frequencies conforms with the Bayer model and no phase transition is indicated in the curves v ( 35Cl)= f(T). Also the temperature coefficients of the 35Cl NQR frequencies are "normal". At 77 K the 35Cl NQR frequencies are 37.409 MHz and 36.172 MHz and at 389 K 35.758 MHz and 34.565 MHz. The compound crystallizes at room temperature with the tetragonal space group D44-P41212, Z = 8 molecules per unit cell; at 295 K : a = 684.2(5) pm, c = 2414.0(20) pm. The relations between the crystal structure and the NQR spectrum are discussed.


2018 ◽  
Vol 73 (9) ◽  
pp. 611-616
Author(s):  
Hideta Ishihara ◽  
Hisashi Honda ◽  
Ingrid Svoboda ◽  
Hartmut Fuess

AbstractThe crystal structure of [4-C2H5-C6H4NH3]2ZnBr4 (1) has been determined at 150(2) K: triclinic, P1̅, a=724.82(2), b=1194.20(4), c=1322.26(4) pm, α=74.151(3), β=80.887(3), γ=80.434(3)°, and Z=2. There are two crystallographically independent cations in the unit cell of 1: one has its benzene ring perpendicular to the crystallographic a axis of the unit cell and the other one has its benzene ring perpendicular to the c axis. These cations are alternatingly located along the c axis and form organic layers, and the ZnBr4 anions form inorganic layers in between. Zn–Br···H–N hydrogen bonds are formed between cations and anions. In accordance with the crystal structure, four nuclear quadrupole resonance (NQR) lines of 81Br were observed. The temperature dependence of the 81Br NQR frequencies between 77 and 320 K shows a peculiar feature which is not due to a structural phase transition. The measurement of 13C nuclear magnetic resonance spectra at around T=340 K indicates a redistribution of cations. The temperature dependence of 81Br NQR frequencies and differential thermal analysis measurements show that [4-C2H5-C6H4NH3]2CdBr4 (2) undergoes a structural phase transition at around 190 K.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
A. Vasileva ◽  
P. Golub ◽  
I. Doroshenko ◽  
V. Pogorelov ◽  
V. Sablinskas ◽  
...  

The investigation of the temperature dependence of FTIR spectrum of n-octanol in the temperature range from −150°C to 50°C is presented. The observed changes in the registered spectra during gradual heating of the sample were analysed. The structure transformation at the phase transition from solid to liquid phase is detected.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950061
Author(s):  
K. A. Brekhov ◽  
N. A. Ilyin ◽  
E. D. Mishina ◽  
P. A. Prudkovskii ◽  
G. Kh. Kitaeva

In this paper, we present the results of the temperature dependence studies of the photoinduced phonon mode which appears in a ferroelectric-semiconductor Sn2P2S6 (SPS) crystal under the influence of femtosecond laser pulses. We show that its behavior reminds the soft mode one near the phase transition. However, the observed decrease in the oscillation frequency in the vicinity of Curie temperature Tc is much weaker than previously reported. This can be explained by the shadowing of the pure soft mode by its interaction with other photoinduced modes.


Sign in / Sign up

Export Citation Format

Share Document