Susceptibility of hairy root lines of Brassica species to Plasmodiophora brassicae and in an in vitro subculture system

2006 ◽  
Vol 72 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Takahiro Asano ◽  
Akiko Kodama ◽  
Koji Kageyama
Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
R Bertóti ◽  
Á Alberti ◽  
A Böszörményi ◽  
R Könye ◽  
T Horváth ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Ye-Eun Park ◽  
Chang-Ha Park ◽  
Hyeon-Ji Yeo ◽  
Yong-Suk Chung ◽  
Sang-Un Park

Peanut (Arachis hypogaea) is a crop that can produce resveratrol, a compound with various biological properties, such as those that exert antioxidant, anticancer, and anti-inflammatory effects. In this study, trans-resveratrol was detected in the roots, leaves, and stems of tan and purple seed coat peanuts (Arachis hypogaea) cultivated in a growth chamber. Both cultivars showed higher levels of resveratrol in the roots than the other plant parts. Thus, both cultivars were inoculated with Agrobacterium rhizogenes, in vitro, to promote hairy root development, thereby producing enhanced levels of t-resveratrol. After 1 month of culture, hairy roots from the two cultivars showed higher levels of fresh weight than those of seedling roots. Furthermore, both cultivars contained higher t-resveratrol levels than those of their seedling roots (6.88 ± 0.21 mg/g and 28.07 ± 0.46 mg/g, respectively); however, purple seed coat peanut hairy roots contained higher t-resveratrol levels than those of tan seed coat peanut hairy roots, ranging from 70.16 to 166.76 mg/g and from 46.61 to 54.31 mg/g, respectively. The findings of this study indicate that peanut hairy roots could be a good source for t-resveratrol production due to their rapid growth, high biomass, and substantial amount of resveratrol.


Author(s):  
Ravi Shankar Singh ◽  
Tirthartha Chattopadhyay ◽  
Dharamsheela Thakur ◽  
Nitish Kumar ◽  
Tribhuwan Kumar ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Sinja Brand ◽  
Hans-Peter Soechting

A series of greenhouse experiments was conducted to evaluate the effect of Plasmodiophora brassicae virulence on clubroot development and propagation of resting spores in 86 plant species from 19 botanical families. Plants were artificially inoculated with two isolates of P. brassicae, which were either virulent on clubroot-resistant oilseed rape cv. Mendel (P1 (+)) or avirulent on this cultivar (P1). Clubroot severity and the number of resting spores inside the roots were assessed 35 days post inoculation. Typical clubroot symptoms were observed only in the Brassicaceae family. P1 (+)-inoculated species exhibited more severe symptoms (2 to 10–fold more severe), bigger galls (1.1 to 5.8 fold heavier) and higher number of resting spores than the P1-inoculated plants. Among all Brassica species, Bunias orientalis, Coronopus squamatus and Raphanus sativus were fully resistant against both isolates, while Camelina sativa, Capsella bursa-pastoris, Coincya momensis, Descurainia sophia, Diplotaxis muralis, Erucastrum gallicum, Neslia paniculata, Sinapis alba, S. arvensis, Sisymbrium altissimum, S. loeselii and Thlaspi arvense were highly susceptible. Conringia orientalis, Diplotaxis tenuifolia, Hirschfeldia incana, Iberis amara, Lepidium campestre and Neslia paniculata were completely or partially resistant to P1-isolate but highly susceptible to P1 (+). These results propose that the basis for resistance in these species may be similar to that found in some commercial cultivars, and that these species could contribute to the build-up of inoculum of virulent pathotypes. Furthermore, the pathogen DNA was detected in Alopecurus myosuroides, Phacelia tanacatifolia, Papaver rhoeas and Pisum sativum. It can concluded that the number and diversity of hosts for P. brassicae are greater than previously reported.


2012 ◽  
Vol 34 (3se) ◽  
Author(s):  
Bui Dinh Thach ◽  
Nguyen Minh Hieu ◽  
Pham Thi Phuong Uyen ◽  
Ngo Ke Suong ◽  
Nguyen Huu Ho

2014 ◽  
Vol 67 (2) ◽  
pp. 7247-7260 ◽  
Author(s):  
Pablo Andrés Gutiérrez Sánchez ◽  
Juan Fernando Alzate ◽  
Mauricio Marín Montoya

Spongospora subterranea, the causal agent of Potato powdery scab, is an important soil-borne obligate protozoan commonly found in Andean soils. This is a serious problem that causes cosmetic damage on the skin of tubers and induces root gall formation, diminishing the yield and commercial value of the potato. Genetic studies on S. subterranea are difficult due to its obligate parasitism, which explains the lack of available knowledge on its basic biology. S. subterranea is a member of the Plasmodiophorida order, a protist taxa that includes other important plant pathogens such as Plasmodiophora brassicae and Spongospora nasturtii. Little is known about the genomes of Plasmodiophorida; however, with the use of Next-Generation Sequencing technologies combined with appropriate bioinformatic techniques, it is possible to obtain genomic sequences from obligate pathogens such as S. subterranea. To gain a better understanding of the biology of this pathogen and Plasmodiophorida in general, DNA sequences from a cystosori-enriched sample of S. subterranea were obtained using 454 pyrosequencing technology. As a first step in understanding the nutritional requirements of S. subterranea as well as its infective and resistance structures, we present a bioinformatic analysis of 24 contigs related to genes involved in the glycolysis, starch, celullose and chitin metabolism. Intron structure and codon usage is also discussed. The genes analyzed in this study are a good source of information for studies aimed at characterizing these enzymes in vitro, as well as the generation of new methods for the molecular detection of S. subterranea in either soils or infected plants.


2021 ◽  
Vol 6 (2) ◽  
pp. 028-049
Author(s):  
Éva Szőke ◽  
Éva Lemberkovics

The importance of chamomile (Chamomilla recutita) inflorescence is widely known in classical and folk medicine, with the largest group of its effective constituents forming the essential oil (chamazulene, a-bisabolol, α-farnesene, trans-β-farnesene, spathulenol, cis/trans-en-in-dicycloethers). Among cultivated species, the Hungarian BK-2 contains more chamazulene in its essential oil than the German Degumil type, which is mainly cultivated for its a-bisabolol. Both components have important antiinflammatory activities. Wild populations can be easily distinguished from cultivated ones by their high amount of bisaboloides, particularly the flower of Hungarian Szabadkígyós wild type, which contained on average 48 % of the biologically active (-)-a-bisabolol. The population of Szabadkígyós has good salt tolerance which is important owing to global warming, because the proportion of saline areas is increasing worldwide. To keep the genome of Szabadkígyós having high (-)-a-bisabolol content, Szőke and research team used biotechnological methods. Sterile plantlets, were infected by Agrobacterium rhizogenes strains #A-4, #15834, #R-1601. The hairy root clones possessing the best growing and biosynthetical potential were multiplied for phytochemical investigations. Pharmacologically important compounds of their essential oils were followed in great detail. The amount of in vitro cultured terpenoids and polyin compounds was compared with that of in vivo plants. GC-MS studies showed that sterile chamomile cultures generated the most important terpenoid and polyin compounds characteristics of the mother plant. Berkheyaradulene, geranyl-isovalerat and cedrol as new components were identified in these sterile cultures. The main component of hairy root cultures (D/400, D/1, D/100 and Sz/400) was tr-b-farnesene and in addition one new compound: a-selinene was identified. Hairy root culture originated from chamomile collected in Szabadkígyós was intensive increased the essential oil content and pharmacological active compounds: (-) -α-bisabolol and β-eudesmol was also synthetized in large quantity. Furthermore, in vitro organized cultures were made from this population to obtain propagation material containing numerous active substances.


Author(s):  
Sonia Malik ◽  
Sara Adrián L. Andrade ◽  
Mohammad Hossein Mirjalili ◽  
Randolph R. J. Arroo ◽  
Mercedes Bonfill ◽  
...  

Author(s):  
Eduardo Berenguer ◽  
Elena A Minina ◽  
Elena Carneros ◽  
Ivett Bárány ◽  
Peter V Bozhkov ◽  
...  

Abstract Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


Sign in / Sign up

Export Citation Format

Share Document