Disease suppression by the cyclic lipopeptides iturin A and surfactin from Bacillus spp. against Fusarium wilt of lettuce

2018 ◽  
Vol 85 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Shohei Fujita ◽  
Kenji Yokota
Nova ◽  
2011 ◽  
Vol 9 (16) ◽  
pp. 177 ◽  
Author(s):  
Cristian Layton ◽  
Edna Maldonado ◽  
Luisa Monroy ◽  
Lucía Constanza Corrales Ramírez MSC ◽  
Ligia Consuelo Sánchez Leal MSC

El presente estudio documental evalúa el efecto biocontrolador del género <em>Bacillus sp </em>contra hongos fitopatógenos de plantas, particularmente, a través de relaciones antagónicas inductoras de muerte celular en términos inminentemente naturales. <em>Fusarium oxysporum </em>se encuentra muy relacionado con casos de marchitez vascular y pudrición de raíz en variedad de plantas, obstrucción de los vasos que permiten la circulación vegetal hasta causar amarillamiento de las hojas por imposibilidad en el transporte de nutrientes, causal de grandes pérdidas económicas en el campo agrícola nacional. Se han establecido varios mecanismos para controlar este hongo micelial dentro de las que se encuentran el uso extensivo y variable de agroquímicos y pesticidas, práctica que por sus efectos nocivos con el medio ambiente se ha comenzado a reemplazar por empleo de especies del género <em>Bacillus. </em>La acción biocontroladora de este género bacteriano esta mediada por su perfil bioquímico ya que son productores de múltiples metabolitos biológicamente activos, en el caso de <em>Bacillus subtilis </em>de Iturin A y fengycin y en <em>Bacillus brevis de gramicidina S </em>(1-5) son capaces de inhibir el desarrollo y crecimiento normal de otros microorganismos, lo que sugiere su utilización para el biocontrol de plagas en aras al fortalecimiento de los actuales estándares de calidad en los procesos ambientales.


2020 ◽  
Vol 8 (7) ◽  
pp. 1037 ◽  
Author(s):  
Dragana Miljaković ◽  
Jelena Marinković ◽  
Svetlana Balešević-Tubić

Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.


2009 ◽  
Vol 7 (4) ◽  
pp. 644 ◽  
Author(s):  
Stephen Moran ◽  
Dilip K. Rai ◽  
Benjamin R. Clark ◽  
Cormac D. Murphy

2003 ◽  
Vol 93 (5) ◽  
pp. 626-632 ◽  
Author(s):  
Marjan de Boer ◽  
Peter Bom ◽  
Frodo Kindt ◽  
Joost J. B. Keurentjes ◽  
Ientse van der Sluis ◽  
...  

Biological control of soilborne plant pathogens in the field has given variable results. By combining specific strains of microorganisms, multiple traits antagonizing the pathogen can be combined and this may result in a higher level of protection. Pseudomonas putida WCS358 suppresses Fusarium wilt of radish by effectively competing for iron through the production of its pseudobactin siderophore. However, in some bioassays pseudobactin-negative mutants of WCS358 also suppressed disease to the same extent as WCS358, suggesting that an, as yet unknown, additional mechanism may be operative in this strain. P. putida strain RE8 induced systemic resistance against fusarium wilt. When WCS358 and RE8 were mixed through soil together, disease suppression was significantly enhanced to approximately 50% as compared to the 30% reduction for the single strain treatments. Moreover, when one strain failed to suppress disease in the single application, the combination still resulted in disease control. The enhanced disease suppression by the combination of P. putida strains WCS358 and RE8 is most likely the result of the combination of their different disease-suppressive mechanisms. These results demonstrate that combining biocontrol strains can lead to more effective, or at least, more reliable biocontrol of fusarium wilt of radish.


2017 ◽  
Vol 14 (3) ◽  
pp. 1169-1176
Author(s):  
P. Rajeswari ◽  
Rupam Kapoor

ABSTRACT: Fusarium oxysporum causes Fusarium wilt of crop plants leads to considerable yield loss. The study was conducted to determine the beneficial effects of combining Trichoderma species and Pseudomonas fluorescens i.e Trichodema viride+ Pseudomonas fluorescens (Tv+Pf) (1+2%), Trichoderma harzianum+Pseudomonas fluorescens (Th+Pf) (1.5+2%), Trichoderma viride +Trichoderma harzianum (Tv+Th) (1+1.5%) on the activity of cellulolytic enzymes of Fusarium oxysporum to control Fusarium wilt of Arachis hypogaea. L wilt in vitro. The activity of 1,4 -β – Endoglucanase, 1,4 -β – Exoglucanase, Cellobiases produced by Fusarium oxysporum (Control) was higher. Maximum inhibition of Cellulolytic enzymes was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf) (1+2%), followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf) (1.5+2%) and Trichoderma viride + Trichoderma harzianum (Tv+Th) (1+1.5%). However, disease suppression of Fusarium wilt of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2%) was considerably better as compared to other two strains. At the same time the other two combinations resulted in enhanced disease suppression as compared to single strains. This indicates that the potential benefits of using combination treatments to suppress Fusarium wilt. The study suggests the significance of interactive effects of Trichoderma and Pseudomonas in biocontrol of wilt disease.


2021 ◽  
pp. 104671
Author(s):  
Imen Haddoudi ◽  
Jordi Cabrefiga ◽  
Isabel Mora ◽  
Haythem Mhadhbi ◽  
Emilio Montesinos ◽  
...  

2021 ◽  
Author(s):  
Beibei Wang ◽  
Jinming Yang ◽  
Zongzhuan Shen ◽  
Yannan Ou ◽  
Lin Fu ◽  
...  

Abstract. Crop rotation and bio-organic fertilizer application have historically been employed as efficient management strategies for soil-borne disease suppression through soil microbiome manipulation. However, details of how this occurs, and to what extent the combination of methods affects soil microbiota reconstruction from diseased soils lacks investigation. In this study, pineapple-banana rotation combined with biofertilizer application was used to suppress banana Fusarium wilt disease, and effects on both bacterial and fungal communities were investigated using the Miseq Illumine sequencing platform. Our results show that pineapple-banana rotation significantly reduces Fusarium wilt disease incidence, and that the application of bio-organic fertilizer causes additional suppression. Bacterial and fungal communities thrive using rotation in combination with bio-organic fertilizer application: taxonomic and phylogenetic α-diversity in both bacteria and fungi increase along with disease suppression. Between the two strategies, bio-organic fertilizer application affects both bacterial and fungal community composition most predominantly, followed by rotation. Large-scale changes in the fungal community composition and special Burkholderia-related network functions contribute to the observed soil borne-disease suppression. Our results indicate that pineapple-banana rotation combined with bio-organic fertilizer application has strong potential for the sustainable management of banana Fusarium wilt disease.


2020 ◽  
Vol 18 (1) ◽  
pp. 103-112
Author(s):  
R. A. OLOYEDE ◽  
A. A. ILUPEJU ◽  
O. O. OYELAKIN ◽  
W. R. AJIJOLA

Fusarium wilt is one of the important diseases of cucumber and causes economic loss to farmers. The present study was undertaken to evaluate the potential of rhizosphere lactic acid bacteria as biocontrol agents of Fusarium wilt of cucumber. Lactic acid bacteria (LAB) were isolated and identified from the rhizosphere of five medicinal plants. The in-vitro antagonistic activity of LAB strains on F. oxysporum f.sp. cucumerinum was evaluated by dual culture method. The screen house experiment was then conducted to assess the effect of antagonistic LAB isolates on Fusarium wilt disease incidence in cucumber plants. The antagonistic LAB strains were further characterized using 16S rRNA gene sequencing technique. The total LAB counts of rhizospheric soil samples ranged from 7.0×105 cfu/g to 15.0×105 cfu/g. The LAB isolates were identified as strains of Lactobacillus acidophilus (21.4%), L. plantarum (35.7%), L. fermentum (28.6%), L. alimentarius (7.1%) and L. brevis (7.1%). Treatment of cucumber seeds with antagonistic LAB strains significantly reduced Fusarium wilt of cucumber incidence from 95% to 48%. Lactobacillus fermentum isolated from the rhizosphere of A. indica exhibited strong disease suppression (49.5%). The study therefore revealed that the rhizospheric-LAB could be applied to reduce the manifestation of Fusarium wilt in cucumber.    


2013 ◽  
Vol 53 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Souad Zaim ◽  
Lakhdar Belabid ◽  
Miloud Bellahcene

Abstract Among 131 rhizobacteria isolates, 29 potentially antagonistic strains were screened in in vitro assays. The five antagonistic Bacillus spp. Rb29, Rb6, Rb12, Rb4, and Rb15 showed the most inhibitory effect against FOC1 (from 25.63 to 71.11%), mycelial growth, and FOC2 (from 28.43 to 60.65%) in vitro. Results also revealed that production of volatile metabolite, components and inhibition of the test pathogen by volatile metabolites varied among different antagonistic rhizobacteria. Isolates Rb29, Rb6, Rb12, Rb4, and Rb15 produced more volatile metabolites which inhibited mycelial FOC growth by 40%. Chickpea Fusarium wilt severity caused by FOC1 was reduced from 60 to 99% in the susceptible cultivar ILC 482 treated with antagonistic Bacillus spp. (Rb29, Rb6, Rb12, Rb4, and Rb15) in pot assays and by 98, 81, 68, 64, 57.20%, respectively, in the field trials. As for their beneficial effects on disease control, the results revealed that Bacillus spp. may improve plant growth and disease control.


Sign in / Sign up

Export Citation Format

Share Document