scholarly journals Genetic structure of Eurasian beaver in Romania: insights after two decades from the reintroduction

2021 ◽  
Vol 67 (6) ◽  
Author(s):  
Ancuta Fedorca ◽  
Elena Ciocirlan ◽  
Claudiu Pasca ◽  
Mihai Fedorca ◽  
Alexandru Gridan ◽  
...  

AbstractOnce exploited for fur, meat, and extracting the yellowish exudate called castoreum, the Eurasian beaver disappeared from Romania during the eighteenth century. After, the reintroductions carried out two decades ago are currently thriving in the Danube River basin. Using nine nSSR markers, we analysed samples from 98 individuals, and we found no genetic substructure, suggesting high dispersal and gene flow capabilities. The stepwise mutation model (SMM) indicated the existence of a recent genetic bottleneck, though the Eurasian beaver retains high levels of genetic diversity and population growth facilitated variation in nSSR loci. A fine-scale spatial correlation in females was detected, contrasting with males’ dispersal on longer distances. While the movement and establishment of individuals’ new territories were made under natural predation pressure, the mix following natural expansion improved the fitness and could contribute to a higher genetic diversity than the source population. With any reintroduction, a focus on capturing individuals from various geographic origins, as well as securing many and suitable founding individuals (adults, subadults, and juveniles) with mixed origins, could secure the post-genetic bottleneck recovery and higher genetic diversity. Beyond this conservation success, future management strategies should consider building a National Action Plan (NAP) for the species, including a permanent genetic monitoring programme for Eurasian beaver.

2021 ◽  
Vol 288 (1944) ◽  
pp. 20202639 ◽  
Author(s):  
Ryan E. Brock ◽  
Liam P. Crowther ◽  
David J. Wright ◽  
David S. Richardson ◽  
Claire Carvell ◽  
...  

Genetic bottlenecks can limit the success of populations colonizing new ranges. However, successful colonizations can occur despite bottlenecks, a phenomenon known as the genetic paradox of invasion. Eusocial Hymenoptera such as bumblebees (Bombusspp.) should be particularly vulnerable to genetic bottlenecks, since homozygosity at the sex-determining locus leads to costly diploid male production (DMP). The Tree Bumblebee (Bombus hypnorum) has rapidly colonized the UK since 2001 and has been highlighted as exemplifying the genetic paradox of invasion. Using microsatellite genotyping, combined with the first genetic estimates of DMP in UKB. hypnorum, we tested two alternative genetic hypotheses (‘bottleneck’ and ‘gene flow’ hypotheses) forB. hypnorum's colonization of the UK. We found that the UK population has not undergone a recent severe genetic bottleneck and exhibits levels of genetic diversity falling between those of widespread and range-restrictedBombusspecies. Diploid males occurred in 15.4% of reared colonies, leading to an estimate of 21.5 alleles at the sex-determining locus. Overall, the findings show that this population is not bottlenecked, instead suggesting that it is experiencing continued gene flow from the continental European source population with only moderate loss of genetic diversity, and does not exemplify the genetic paradox of invasion.


1999 ◽  
Vol 40 (10) ◽  
pp. 1-8 ◽  
Author(s):  
T. Botterweg ◽  
D. W. Rodda

An Internationally funded Programme, involving the European Commission, the Global Environment Facility managed by UN Development Programme, the World Bank and the European Bank for Reconstruction and Development, is addressing river basin problems in a unique situation. The solution of these should lead to the prevention of pollution and better water quality, protected ecosystems, sustainable water resources and more efficient sewerage and waste water treatment facilities for the 90 million population living in the region and the reduction of pollution impact on the Black Sea into which the Danube River flows. The paper introduces current Programme activities, the challenges being met and progress. Work is described for implementing a monitoring strategy, an accident emergency warning system and implementation of the 1994 Strategic Action Plan. The applied research activity is explained. The Programme is a major activity with many elements addressing a wide range of environmental problems in the catchment of a major international waterway.


1997 ◽  
Vol 25 (3) ◽  
pp. 557-560 ◽  
Author(s):  
Ulrike F. Schlacht ◽  
Evelyn M. Möller ◽  
Hartwig G. Geiger

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Edith Khamonya Avedi ◽  
Adedapo Olutola Adediji ◽  
Dora Chao Kilalo ◽  
Florence Mmogi Olubayo ◽  
Isaac Macharia ◽  
...  

Abstract Background Tomato production is threatened worldwide by the occurrence of begomoviruses which are associated with tomato leaf curl diseases. There is little information on the molecular properties of tomato begomoviruses in Kenya, hence we investigated the population and genetic diversity of begomoviruses associated with tomato leaf curl in Kenya. Methods Tomato leaf samples with virus-like symptoms were obtained from farmers’ field across the country in 2018 and Illumina sequencing undertaken to determine the genetic diversity of associated begomoviruses. Additionally, the occurrence of selection pressure and recombinant isolates within the population were also evaluated. Results Twelve complete begomovirus genomes were obtained from our samples with an average coverage of 99.9%. The sequences showed 95.7–99.7% identity among each other and 95.9–98.9% similarities with a Tomato leaf curl virus Arusha virus (ToLCArV) isolate from Tanzania. Analysis of amino acid sequences showed the highest identities in the regions coding for the coat protein gene (98.5–100%) within the isolates, and 97.1–100% identity with the C4 gene of ToLCArV. Phylogenetic algorithms clustered all Kenyan isolates in the same clades with ToLCArV, thus confirming the isolates to be a variant of the virus. There was no evidence of recombination within our isolates. Estimation of selection pressure within the virus population revealed the occurrence of negative or purifying selection in five out of the six coding regions of the sequences. Conclusions The begomovirus associated with tomato leaf curl diseases of tomato in Kenya is a variant of ToLCArV, possibly originating from Tanzania. There is low genetic diversity within the virus population and this information is useful in the development of appropriate management strategies for the disease in the country.


2005 ◽  
Vol 83 (10) ◽  
pp. 1322-1328 ◽  
Author(s):  
Yong-Bi Fu ◽  
Bruce E. Coulman ◽  
Yasas S.N. Ferdinandez ◽  
Jacques Cayouette ◽  
Paul M. Peterson

Fringed brome ( Bromus ciliatus L.) is found in native stands throughout a large area of North America. Little is known about the genetic diversity of this species. The amplified fragment length polymorphism (AFLP) technique was applied to assess the genetic diversity of 16 fringed brome populations sampled in Canada from the provinces of Alberta, British Columbia, Quebec, and Saskatchewan. Four AFLP primer pairs were employed to screen 82 samples with four to six samples per population and 83 polymorphic AFLP bands scored for each sample. The frequencies of the scored bands in all assayed samples ranged from 0.01 to 0.99 and averaged 0.53. Analysis of molecular variance revealed that 52.6% of the total AFLP variation resided among the 16 populations and 20.6% among the four provinces. The five Quebec populations appeared to be genetically the most diverse and distinct. The AFLP variability observed was significantly associated with the geographic origins of the fringed brome populations. These findings are useful for sampling fringed brome germplasm from natural populations for germplasm conservation and should facilitate the development of genetically diverse regional cultivars for habitat restoration and revegetation.


2020 ◽  
Vol 38 ◽  
Author(s):  
T. SCHNEIDER ◽  
M.A. RIZZARDI ◽  
S.P. BRAMMER ◽  
S.M. SCHEFFER-BASSO ◽  
A.L. NUNES

ABSTRACT: In view of the rapid evolution of Conyza sumatrensis populations resistant to glyphosate, it is necessary to understand the genetic diversity aimed to improve strategies for managing this weed. We investigated the genetic dissimilarity among 15 biotypes of C. sumatrensis from different geographic regions using microsatellite loci. The biotypes, were cultivated in a greenhouse to obtain vegetal material for DNA extraction. Nineteen microsatellite markers (SSR), were developed for C. sumatrensis biotypes. The genetic dissimilarity was estimated by the Jaccard coefficient (JC) and the biotypes grouped by the UPGMA method. The results demonstrated a high dissimilarity (JC = 7.14 to 82.62) of the analyzed material, with the biotypes forming five groups, being one group formed just by the susceptible biotype and in the others grouped by biotypes from distinct locations in the same group The high genetic diversity of C. sumatrensis indicates that the biotypes may show different responses to different management strategies, and that the mechanisms of resistance to herbicides and characteristics of evolution of populations due to adaptability may be some of the factors involved in the genetic variability of the species.


2018 ◽  
Vol 22 (1) ◽  
pp. 22
Author(s):  
Jayusman Jayusman ◽  
Muhammad Na’iem ◽  
Sapto Indrioko ◽  
Eko Bhakti Hardiyanto ◽  
ILG Nurcahyaningsih

Surian Toona sinensis Roem is one of the most widely planted species in Indonesia. This study aimed to estimate the genetic diversity between a number of surian populations in a progeny test using RAPD markers, with the goal of proposing management strategies for a surian breeding program. Ninety-six individual trees from 8 populations of surian were chosen as samples for analysis. Eleven polymorphic primers (OP-B3, OP-B4, OP-B10, OP-H3, OP-Y6, OP-Y7, OP-Y8, OP-Y10, OP-Y11, OP-Y14, and OP-06) producing reproducible bands were analyzed for the 96 trees, with six trees per family sampled. Data were analyzed using GenAlEx 6.3, NTSYS 2.02. The observed percentage of polymorphic loci ranged from 18.2% to 50%. The mean level of genetic diversity among the surian populations was considered to be moderate (He 0.304). Cluster analysis grouped the genotypes into two main clusters, at similarity levels of 0.68 and 0.46. The first two axes of the PCoA explained 46.16% and 25.54% of the total variation, respectively. The grouping of samples into clusters and subclusters did not correspond with family and their distances, but the grouping was in line with the genetic distances of the samples.


2018 ◽  
Vol 2 ◽  
pp. e25806
Author(s):  
Annmarie Fearing ◽  
Kelcee Smith ◽  
Tonya Wiley ◽  
Jeff Whitty ◽  
Kevin Feldheim ◽  
...  

The Critically Endangered (International Union for Conservation of Nature) largetooth sawfish, Pristispristis, was historically distributed in the tropical Pacific, Atlantic and Indian Oceans. Today, ‘viable’ populations are largely limited to northern Australia. Populations that have suffered from drastic declines in abundance, such as those experienced by P.pristis, are typically at risk of having reduced, or low, levels of genetic diversity. Previous research found that P.pristis in Australia have experienced a genetic bottleneck, but it is unclear whether this bottleneck is the result of contemporary declines over the last century, or if it is the result of historic processes. A direct way to assess whether this genetic bottleneck occurred relatively recently is to compare levels of genetic diversity in contemporary and historic populations. Sawfish saws that were taken as trophies over the past century can now be found in natural history collections around the world and can provide DNA from past sawfish populations. We collected tissue samples from 150 dried P.pristis saws found in both private and public natural history collections. Because DNA from natural history specimens tends to be highly degraded, we targeted ten small DNA fragments, ~150 base pairs each, to amplify and sequence the entire mitochondrial control region. These data will provide important baseline information about P.pristis that can be used to quantify any loss of genetic diversity over the past ~100 years and assess their long-term survival potential. If the levels of genetic diversity in contemporary populations are severely reduced from those of past populations, protecting remaining genetic diversity within and between viable populations should be a priority in conservation plans.


2017 ◽  
Author(s):  
Priscila T. Rodrigues ◽  
Hugo O. Valdivia ◽  
Thais C. de Oliveira ◽  
João Marcelo P. Alves ◽  
Ana Maria R. C. Duarte ◽  
...  

AbstractBackgroundThe Americas were the last continent to be settled by modern humans, but how and when human malaria parasites arrived in the New World is uncertain. Here, we apply phylogenetic analysis and coalescent-based gene flow modeling to a global collection of Plasmodium falciparum and P. vivax mitogenomes to infer the demographic history and geographic origins of malaria parasites circulating in the Americas. Importantly, we examine P. vivax mitogenomes from previously unsampled forest-covered sites along the Atlantic Coast of Brazil, including the vivax-like species P. simium that locally infects platyrrhini monkeys.ResultsThe best-supported gene flow models are consistent with migration of both malaria parasites from Africa and South Asia to the New World, with no genetic signature of a population bottleneck upon parasite's arrival in the Americas. We found evidence of additional gene flow from Melanesia in P. vivax (but not P. falciparum) mitogenomes from the Americas and speculate that some P. vivax lineages might have arrived with the Australasian peoples who contributed genes to Native Americans in pre-Columbian times. Mitochondrial haplotypes characterized in P. simium from monkeys from the Atlantic Forest are shared by local humans. These vivax-like lineages have not spread to the Amazon Basin, are much less diverse than P. vivax circulating elsewhere in Brazil, and show no close genetic relatedness with P. vivax populations from other continents.ConclusionsEnslaved peoples brought from a wide variety of African locations were major carriers of P. falciparum mitochondrial lineages into the Americas, but additional human migration waves are likely to have contributed to the extensive genetic diversity of present-day New World populations of P. vivax. The reduced genetic diversity of vivax-like monkey parasites, compared with human P. vivax from across this country, argues for a recent human-to-monkey transfer of these lineages in the Atlantic Forest of Brazil.Author summaryMalaria is currently endemic to the Americas, with over 400,000 laboratory-confirmed infections reported annually, but how and when human malaria parasites entered this continent remains largely unknown. To determine the geographic origins of malaria parasites currently circulating in the Americas, we examined a global collection of Plasmodium falciparum and P. vivax mitochondrial genomes, including those from understudied isolates of P. vivax and P. simium, a vivax-like species that infect platyrrhini monkeys, from the Atlantic Forest of Brazil. We found evidence of significant historical migration to the New World of malaria parasites from Africa and, to a lesser extent, South Asia, with further genetic contribution of Melanesian lineages to South American P. vivax populations. Importantly, mitochondrial haplotypes of P. simium are shared by monkeys and humans from the Atlantic Forest, most likely as a result of a recent human-to-monkey transfer. Interestingly, these potentially zoonotic lineages are not found in the Amazon Basin, the main malaria-endemic area in the Americas. We conclude that enslaved Africans were the main carriers of P. falciparum mitochondrial lineages into the Americas, whereas additional migration waves of Australasian peoples and parasites may have contributed to the genetic makeup of present-day New World populations of P. vivax.


2016 ◽  
Vol 75 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Marko Zebec ◽  
Marilena Idžojtić ◽  
Zlatko Šatović ◽  
Igor Poljak ◽  
Zlatko Liber

AbstractThe main objective of this research was to assess the genetic diversity of 5 natural field elm populations in Croatia. The study results suggest that the observed populations are characterized by a satisfactory amount of heterozygosity, and that the impact of the Dutch elm disease on the amount of genetic diversity in the sampled populations is currently negligible. However, one population displayed a significant excess of heterozygosity, implying a genetic bottleneck. The existence of a very clear genetic differentiation between the continental and the Mediterranean populations of Ulmus minor in Croatia was noticed.


Sign in / Sign up

Export Citation Format

Share Document