SIFO–VM/TIM universal biquad filter using single DVCCTA with fully CMOS realization

Author(s):  
Chandra Shankar ◽  
Sajai Vir Singh ◽  
Raza Imam
Keyword(s):  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Worapong Tangsrirat

This paper describes the conception of the current follower transconductance amplifier (CFTA) with electronically and linearly current tunable. The newly modified element is realized based on the use of transconductance cells (Gms) as core circuits. The advantage of this element is that the current transfer ratios (iz/ipandix/iz) can be tuned electronically and linearly by adjusting external DC bias currents. The circuit is designed and analyzed in 0.35 μm TSMC CMOS technology. Simulation results for the circuit with ±1.25 V supply voltages show that it consumes only 0.43 mw quiescent power with 70 MHz bandwidth. As an application example, a current-mode KHN biquad filter is designed and simulated.


2006 ◽  
Vol 23 (2) ◽  
pp. 24-27 ◽  
Author(s):  
K. Kumar ◽  
K. Pal
Keyword(s):  

2020 ◽  
Vol 95 ◽  
pp. 104675 ◽  
Author(s):  
Ricardo Póvoa ◽  
Richa Arya ◽  
António Canelas ◽  
Fábio Passos ◽  
Ricardo Martins ◽  
...  

2013 ◽  
Vol 22 (01) ◽  
pp. 1250077 ◽  
Author(s):  
CHEN-NONG LEE

This paper presents a versatile universal current-mode and transresistance-mode biquadratic filter using only two multiple outputs second-generation current conveyors (MOCCIIs), two grounded capacitors, and three grounded resistors. The proposed configuration can realize all five standard filtering functions from one current-output terminal and one voltage-output terminal, and also provide all these filtering functions from different current-output and voltage-output terminals without changing the filter topology. Moreover, the proposed biquad filter still achieves many advantages like the employment of all grounded passive components, and the minimum number of active component counts, in addition to having no need of inverting-type input signals or double-type input signals for the use of special input signals, high output impedance and low sensitivity performance. H-Spice simulation results confirm the theory.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 563
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

Multi-GHz lowpass filters are key components for many RF applications and are required for the implementation of integrated high-speed analog-to-digital and digital-to-analog converters and optical communication systems. In the last two decades, integrated filters in the Multi-GHz range have been implemented using III-V or SiGe technologies. In all cases in which the size of passive components is a concern, inductorless designs are preferred. Furthermore, due to the recent development of high-speed and high-resolution data converters, highly linear multi-GHz filters are required more and more. Classical open loop topologies are not able to achieve high linearity, and closed loop filters are preferred in all applications where linearity is a key requirement. In this work, we present a fully differential BiCMOS implementation of the classical Sallen Key filter, which is able to operate up to about 10 GHz by exploiting both the bipolar and MOS transistors of a commercial 55-nm BiCMOS technology. The layout of the biquad filter has been implemented, and the results of post-layout simulations are reported. The biquad stage exhibits excellent SFDR (64 dB) and dynamic range (about 50 dB) due to the closed loop operation, and good power efficiency (0.94 pW/Hz/pole) with respect to comparable active inductorless lowpass filters reported in the literature. Moreover, unlike other filters, it exploits the different active devices offered by commercial SiGe BiCMOS technologies. Parametric and Monte Carlo simulations are also included to assess the robustness of the proposed biquad filter against PVT and mismatch variations.


Sign in / Sign up

Export Citation Format

Share Document