scholarly journals 10-GHz Fully Differential Sallen–Key Lowpass Biquad Filters in 55nm SiGe BiCMOS Technology

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 563
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

Multi-GHz lowpass filters are key components for many RF applications and are required for the implementation of integrated high-speed analog-to-digital and digital-to-analog converters and optical communication systems. In the last two decades, integrated filters in the Multi-GHz range have been implemented using III-V or SiGe technologies. In all cases in which the size of passive components is a concern, inductorless designs are preferred. Furthermore, due to the recent development of high-speed and high-resolution data converters, highly linear multi-GHz filters are required more and more. Classical open loop topologies are not able to achieve high linearity, and closed loop filters are preferred in all applications where linearity is a key requirement. In this work, we present a fully differential BiCMOS implementation of the classical Sallen Key filter, which is able to operate up to about 10 GHz by exploiting both the bipolar and MOS transistors of a commercial 55-nm BiCMOS technology. The layout of the biquad filter has been implemented, and the results of post-layout simulations are reported. The biquad stage exhibits excellent SFDR (64 dB) and dynamic range (about 50 dB) due to the closed loop operation, and good power efficiency (0.94 pW/Hz/pole) with respect to comparable active inductorless lowpass filters reported in the literature. Moreover, unlike other filters, it exploits the different active devices offered by commercial SiGe BiCMOS technologies. Parametric and Monte Carlo simulations are also included to assess the robustness of the proposed biquad filter against PVT and mismatch variations.

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 253
Author(s):  
Dong Wang ◽  
Jian Luan ◽  
Xuan Guo ◽  
Lei Zhou ◽  
Danyu Wu ◽  
...  

A 5 GS/s 8-bit analog-to-digital converter (ADC) implemented in 0.18 μm SiGe BiCMOS technology has been demonstrated. The proposed ADC is based on two-channel time-interleaved architecture, and each sub-ADC employs a two-stage cascaded folding and interpolating topology of radix-4. An open loop track-and-hold amplifier with enhanced linearity is designed to meet the dynamic performance requirement. The on-chip self-calibration technique is introduced to compensate the interleaving mismatches between two sub-ADCs. Measurement results show that the spurious free dynamic range (SFDR) stays above 44.8 dB with a peak of 53.52 dB, and the effective number of bits (ENOB) is greater than 5.8 bit with a maximum of 6.97 bit up to 2.5 GS/s. The ADC exhibits a differential nonlinearity (DNL) of -0.31/+0.23 LSB (least significant bit) and an integral nonlinearity (INL) of -0.68/+0.68 LSB, respectively. The chip occupies an area of 3.9 × 3.6 mm2, consumes a total power of 2.8 W, and achieves a figure of merit (FoM) of 10 pJ/conversion step.


2012 ◽  
Vol 4 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Behnam Sedighi ◽  
Mahdi Khafaji ◽  
Johann Christoph Scheytt

We present a method to realize a low-power and high-speed digital-to-analog converter (DAC) for system-on-chip applications. The new method is a combination of binary-weighted current cells and R-2R ladder and is specially suited for modern BiCMOS technologies. A prototype 5 GS/s DAC is implemented in 0.13 μm SiGe BiCMOS technology. The DAC dissipates 26 mW and provides an SFDR higher than 48 dB for output frequencies up to 1 GHz.


Frequenz ◽  
2017 ◽  
Vol 71 (3-4) ◽  
Author(s):  
Xuan-Quang Du ◽  
Anselm Knobloch ◽  
Markus Grözing ◽  
Matthias Buck ◽  
Manfred Berroth

AbstractThis paper presents the analysis and the design of a fully-differential digital programmable gain amplifier (PGA) in a 0.13 µm BiCMOS technology. The PGA has a gain control range of 31 dB with 1 dB gain step size and consumes 284 mW from a 3.6 V power supply. At a maximum gain of 25 dB, the PGA exhibits a 3-dB bandwidth of 10.1 GHz. The measured gain error for all 32 possible gain settings is between –0.19/+0.46 dB at 1 GHz. Up to 13 GHz the third harmonic distortion


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2349
Author(s):  
Guillermo Silva Valdecasa ◽  
Jose A. Altabas ◽  
Monika Kupska ◽  
Jesper Bevensee Jensen ◽  
Tom K. Johansen

Quasi-coherent optical receivers have recently emerged targeting access networks, offering improved sensitivity and reach over direct-detection schemes at the expense of a higher receiver bandwidth. Higher levels of system integration together with sufficiently wideband front-end blocks, and in particular high-speed linear transimpedance amplifiers (TIAs), are currently demanded to reduce cost and scale up receiver data rates. In this article, we report on the design and testing of a linear TIA enabling high-speed quasi-coherent receivers. A shunt-feedback loaded common-base topology is adopted, with gain control provided by a subsequent Gilbert cell stage. The circuit was fabricated in a commercial 130 nm SiGe BiCMOS technology and has a bandpass characteristic with a 3 dB bandwidth in the range of 5–50 GHz. A differential transimpedance gain of 68 dBΩ was measured, with 896 mVpp of maximum differential output swing at the 1 dB compression point. System experiments in a quasi-coherent receiver demonstrate an optical receiver sensitivity of −30.5 dBm (BER = 1 × 10−3) at 10 Gbps, and −26 dBm (BER = 1 × 10−3) at 25 Gbps. The proposed TIA represents an enabling component towards highly integrated quasi-coherent receivers.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 73
Author(s):  
Van-Thanh Ta ◽  
Van-Phuc Hoang ◽  
Van-Phu Pham ◽  
Cong-Kha Pham

The time-interleaved analog-to-digital converters (TIADCs), performance is seriously affected by channel mismatches, especially for the applications in the next-generation communication systems. This work presents an improved all-digital background calibration technique for TIADCs by combining the Hadamard transform for calibrating gain and timing mismatches and averaging for offset mismatch cancellation. The numerical simulation results show that the proposed calibration technique completely suppresses the spurious images due to the channel mismatches at the output spectrum, which increases the spurious-free dynamic range (SFDR) and signal-to-noise and distortion ratio (SNDR) by 74 dB and 43.7 dB, respectively. Furthermore, the hardware co-simulation on the field programmable gate array (FPGA) platform is performed to confirm the effectiveness of the proposed calibration technique. The simulation and experimental results clarify the improvement of the proposed calibration technique in the TIADC’s performance.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1058
Author(s):  
Samuel B.S. Lee ◽  
Hang Liu ◽  
Kiat Seng Yeo ◽  
Jer-Ming Chen ◽  
Xiaopeng Yu

This paper presents two new inductorless differential variable-gain transimpedance amplifiers (DVGTIA) with voltage bias controlled variable gain designed in TowerJazz’s 0.18 µm SiGe BiCMOS technology (using CMOS transistors only). Both consist of a modified differential cross-coupled regulated cascode preamplifier stage and a cascaded amplifier stage with bias-controlled gain-variation and third-order interleaving feedback. The designs have wide measured transimpedance gain ranges of 24.5–60.6 dBΩ and 27.8–62.8 dBΩ with bandwidth above 6.42 GHz and 5.22 GHz for DVGTIA designs 1 and 2 respectively. The core power consumptions are 30.7 mW and 27.5 mW from a 1.8 V supply and the input referred noise currents are 10.3 pA/√Hz and 21.7 pA/√Hz. The DVGTIA designs 1 and 2 have a dynamic range of 40.4 µA to 3 mA and 76.8 µA to 2.7 mA making both suitable for real photodetectors with an on-chip photodetector capacitive load of 250 fF. Both designs are compact with a core area of 100 µm × 85 µm.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

Abstract Analysis, design, and characterization of an E-band Variable Gain Amplifier (VGA) in SiGe BiCMOS commercial technology is presented. VGA topologies are compared in terms of their capability to contribute to receiver linearity and dynamic range. The proposed VGA is based on a Gilbert multiplier cell exploiting current cancellation to enhance control range and linearity. A 1 dB bandwidth ranging from 80 to 100 GHz, a 24 dB gain control range and a −11.5 dBm input 1 dB compression point have been measured.


Sign in / Sign up

Export Citation Format

Share Document