Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction

2015 ◽  
Vol 108 (4) ◽  
pp. 951-963 ◽  
Author(s):  
Welington Luiz Araújo ◽  
Daiene Souza Santos ◽  
Francisco Dini-Andreote ◽  
Jennifer Katherine Salgueiro-Londoño ◽  
Aline Aparecida Camargo-Neves ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 560
Author(s):  
José A. Hernández ◽  
Pedro Díaz-Vivancos ◽  
José Ramón Acosta-Motos ◽  
Nuria Alburquerque ◽  
Domingo Martínez ◽  
...  

(1) Background: Prunus species have the ability to suspend (induce dormancy) and restart growth, in an intricate process in which environmental and physiological factors interact. (2) Methods: In this work, we studied the evolution of sugars, antioxidant metabolism, and abscisic acid (ABA) and gibberellins (GAs) levels during bud dormancy evolution in a high-chill peach variety, grown for two seasons in two different geographical areas with different annual media temperature, a cold (CA) and a temperate area (TA). (3) Results: In both areas, starch content reached a peak at ecodormancy, and then decreased at dormancy release (DR). Sorbitol and sucrose declined at DR, mainly in the CA. In contrast, glucose and fructose levels progressively rose until DR. A decline in ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase and catalase activities occurred in both seasons at DR. Moreover, the H2O2-sensitive SOD isoenzymes, Fe-SOD and Cu,Zn-SOD, and two novel peroxidase isoenzymes, were detected. Overall, these results suggest the occurrence of a controlled oxidative stress during DR. GA7 was the major bioactive GA in both areas, the evolution of its levels being different between seasons and areas. In contrast, ABA content decreased during the dormancy period in both areas, resulting in a reduction in the ABA/total GAs ratio, being more evident in the CA. (4) Conclusion: A possible interaction sugars-hormones-ROS could take place in high-chill peach buds, favoring the DR process, suggesting that, in addition to sugar metabolism, redox interactions can govern bud DR, regardless of chilling requirements.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1099
Author(s):  
Hongyin Qi ◽  
Dingfan Kang ◽  
Weihang Zeng ◽  
Muhammad Jawad Hassan ◽  
Yan Peng ◽  
...  

Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid–glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.


2019 ◽  
Vol 19 (4) ◽  
pp. 935-947 ◽  
Author(s):  
Aysegul Yildiztugay ◽  
Ceyda Ozfidan-Konakci ◽  
Evren Yildiztugay ◽  
Mustafa Kucukoduk

2021 ◽  
Author(s):  
Aiju Meng ◽  
Daxing Wen ◽  
Chunqing Zhang

Spring maize is usually subjected to low-temperature stress during seed germination, which retards seedling growth even if under a suitable temperature. However, the mechanism underlying maize seed germination under low-temperature stress modulating seedling growth after being transferred to normal temperature is still ambiguous. In this study, we used two maize inbred lines with different low-temperature resistance (SM and RM) to investigate the mechanism. The results showed that the SM line had higher lipid peroxidation and lower total antioxidant capacity and germination percentage than the RM line under low-temperature stress, which indicated that the SM line was more vulnerable to low-temperature stress. Further transcriptome analysis revealed that seed germination under low-temperature stress caused down-regulation of photosynthesis related gene ontology (GO) terms in two lines. Moreover, the SM line displayed down-regulation of ribosome and superoxide dismutase (SOD) related genes, whereas genes involved in SOD and vitamin B6 were up-regulated in the RM line. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that photosynthesis and antioxidant metabolism related pathways played important roles in seed germination in response to low-temperature stress, and the photosynthetic system displayed a higher damage degree in the SM line. Both qRT-PCR and physiological characteristics experiments showed similar results with transcriptome data. Taken together, we propose a model for maize seed germination in response to low-temperature stress.


2016 ◽  
Vol 41 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Sandro D. Tatagiba ◽  
Fernando W. Neves ◽  
Adriano L. F. E. Bitti ◽  
Fabrício A. Rodrigues

Sign in / Sign up

Export Citation Format

Share Document