Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures

2020 ◽  
Vol 41 (10) ◽  
pp. 1561-1582
Author(s):  
Yijie Bian ◽  
Puhao Li ◽  
Fan Yang ◽  
Peng Wang ◽  
Weiwei Li ◽  
...  
2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Author(s):  
Recep M Gorguluarslan

This paper aims to improve the energy absorption performance of stiffness-optimized lattice structures by utilizing a multi-objective surrogate-based size optimization that considers the additive manufacturing (AM) constraints such as the minimum printable size. A truss optimization is first utilized at the unit cell level under static compressive loads for stiffness maximization and two optimized lattice configurations called the Face-Body Centered Cubic (FBCC) lattice and the Octet Cubic (OC) are obtained. A multi-objective size optimization process is then carried out to improve the energy absorption capabilities of those lattice designs using non-linear compression simulations with Nylon12 material to be fabricated by the Multi Jet Fusion (MJF) AM process. Thin plate spline (TPS) interpolation method is found to produce very high accuracy as the surrogate model to predict the highly nonlinear response surfaces of energy absorption objectives in the optimization. Compared to the lattice designs with uniform strut diameters, by using the optimization process, the maximum energy absorption efficiency ( EAEm) and the crush stress efficiency ( CSE) of the OC lattice design are further improved up to 33% and 37%, respectively. The FBCC lattice design is also found to have superior EAEm performance compared to the existing lattice types considered for fabricating by the MJF process in the literature.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled axial members are typically used in automobiles’ side and front chassis to improve crashworthiness of vehicles. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of inclusion of functionally graded cellular structures in thin walled members under axial compressive loading. A compact functionally graded composite cellular core was introduced inside a cross tube with side length and wall thickness of 25.4 mm and 3.048 mm, respectively. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were evaluated. The results showed that the inclusion of composite graded cellular structure increased the energy absorption capacity of the cross tube significantly. The composite graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the cross tube thus delaying local tube wall collapse and promoting large localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that were observed in the empty cross tube under axial compressive loading. The variation in deformation mode resulted in enhanced stiffness of the composite structure, and therefore, high energy absorption by the structure. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.


Author(s):  
Mahshid Mahbod ◽  
Masoud Asgari ◽  
Christian Mittelstedt

In this paper, the elastic–plastic mechanical properties of regular and functionally graded additively manufactured porous structures made by a double pyramid dodecahedron unit cell are investigated. The elastic moduli and also energy absorption are evaluated via finite element analysis. Experimental compression tests are performed which demonstrated the accuracy of numerical simulations. Next, single and multi-objective optimizations are performed in order to propose optimized structural designs. Surrogated models are developed for both elastic and plastic mechanical properties. The results show that elastic moduli and the plastic behavior of the lattice structures are considerably affected by the cell geometry and relative density of layers. Consequently, the optimization leads to a significantly better performance of both regular and functionally graded porous structures. The optimization of regular lattice structures leads to great improvement in both elastic and plastic properties. Specific energy absorption, maximum stress, and the elastic moduli in x- and y-directions are improved by 24%, 79%, 56%, and 9%, respectively, compared to the base model. In addition, in the functionally graded optimized models, specific energy absorption and normalized maximum stress are improved by 64% and 56%, respectively, in comparison with the base models.


2020 ◽  
Vol 993 ◽  
pp. 863-868
Author(s):  
Chao Qun Guo ◽  
Tian Yao Wang ◽  
Tian Xiang Yuan ◽  
De Lin Ma ◽  
Yun Zhou ◽  
...  

The aim of this paper is to study the quasi-static axial compressive performance of newly developed steel foam-filled tubes (SFFTs). The energy absorption capability of steel foam-filled tubes was assessed. The results show that steel foam-filled tubes collapse in the axisymmetric-concertina deformation mode. The plateau stress of the plastic deformation of the steel foam-filled tubes decreases with the increase of porosity of steel foams, and is significantly higher than the sum of the identical steel foam and aluminum tube. The absorbed energy per unit volume of the steel foam-filled tubes is 8%~ 15% higher than the sum of those of identical aluminum tubes and steel foams with porosity ranging from 65% to 80%.


2017 ◽  
Vol 744 ◽  
pp. 317-321 ◽  
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Akshay Kumar

The aim of this study is to find the best platen with blades as a new energy dissipating mechanism that causes considerably damage to CFRP/aluminium tubes. Specially designed and manufactured platens with five different cutting blade profiles were used to simultaneously cut and crush square CFRP tubes and aluminium sheet-wrapped CFRP tubes. The platens with blades were evaluated in terms of the deformation mode, mean crushing force, energy absorption and specific energy absorption of tubes. Experimental results showed that tubes cut and crushed by the platen with 45o inclined blades had the best crushing performance and exhibited a more stable deformation mode compared with those for tubes cut and crushed by other platens with different blade profiles. The platens with blades acted as trigger mechanisms that minimise the initial peak crushing force and maximise the energy absorption of tubes compared with tubes crushed by flat loading platens.


2021 ◽  
Vol 250 ◽  
pp. 05006
Author(s):  
R. Sancho ◽  
F. Galvez ◽  
C.L. Garrido ◽  
S. Perosanz-Amarillo ◽  
D. Barba

High-energy absorption and light-weightiness are two critical properties for impact protection in the aerospace sector. In the past, the use of periodic honeycomb structures or random porous metallic foams were the preferred route to obtain a good specific-energy absorption performance. In recent years, the use of additive manufacturing has increased the design freedom creating a new generation of reticulated and porous materials: the metamaterials or lattice materials. The internal geometries of these lattice structures can be tuned for superior optimal properties, e.g., energyabsorption and density. However, the mechanics of these materials under impact need to be understood with the purpose of mechanical optimisation, and the computational models validated. In this work, we present the experimental compressive behaviour, at room temperature, of two Ti6Al4V lattice structures under static and dynamic conditions. The quasi-static tests were performed by using a universal testing machine while the dynamic tests were conducted at 480s-1 with a split-Hopkinson bar. In all cases, the deformation process was filmed to analyse the failure. Finally, finiteelement simulations were done, employing the Johnson-Cook model, to describe the response of the alloy. The simulations were able to reflect the failure characteristics of each metamaterial but were not able to describe the macroscopic response due to the differences between the experimental and computational volume fraction.


2021 ◽  
Vol 250 ◽  
pp. 03004
Author(s):  
Takahiro Kawano ◽  
Yuta Takase ◽  
Tomohisa Kojima ◽  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
...  

Foamed plastics have been used in many engineering fields because of their superiority in low density, energy absorption, thermal insulation, and acoustic damping capacities. With foams, it is known that the microstructure of cells directly relates to macroscopic deformation behaviour. However, mechanical properties based on microstructures composed of non-uniform cells have not been fully understood. This study aims to clarify the mechanical properties grounded on microstructures of foamed plastics subjected to dynamic loading. The quasi-static and dynamic compression test was carried out using foamed plastic with anisotropy in the cell structure, then the strain rate dependence of deformation and energy absorption characteristics was investigated. It was confirmed that the local buckling of the cells was the dominant deformation mode in the plastic collapse of the test piece. It was also confirmed that cell buckling was initiated around the middle in the height after the plastic collapse, then propagated to the whole specimen in both the quasi-static and dynamic tests by using digital image correlation. The stress-strain relationships and the amount of absorbed energy showed strain rate dependence owing to the deformation mode in which the local buckling of the cells is dominant.


Sign in / Sign up

Export Citation Format

Share Document