Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling

APOPTOSIS ◽  
2015 ◽  
Vol 20 (9) ◽  
pp. 1187-1199 ◽  
Author(s):  
Yan Zhou ◽  
Shi-Qing Liu ◽  
Ling Yu ◽  
Bin He ◽  
Shi-Hao Wu ◽  
...  
2009 ◽  
Vol 28 (2) ◽  
pp. 156-163 ◽  
Author(s):  
Shuji Nakagawa ◽  
Yuji Arai ◽  
Osam Mazda ◽  
Tsunao Kishida ◽  
Kenji A. Takahashi ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11715
Author(s):  
Se-Yun Cheon ◽  
Hyun-Ae Kang ◽  
Bo-Ram Jin ◽  
Hyo-Jung Kim ◽  
Yea-Jin Park ◽  
...  

The genus Epilobium consists of approximately 200 species that are distributed worldwide. Some of these herbs have been used for the treatment of diarrhea, infection, irritation, and other disorders associated with inflammation. Unlike that of other Epilobium species, there is little scientific understanding of the pharmacological effect of Epilobium amurense subsp. cephalostigma (Hausskn.) C. J. Chen, Hoch & P. H. Raven. In this study, we demonstrated the anti-inflammatory and antioxidative properties of an E. amurense 95% ethanol extract (EACEE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and observed the underlying mechanism of this effect. We measured the productions of nitric oxide (NO) and reactive oxygen species, and examined the actions of EACEE on transcription factors in the macrophages. EACEE reduced NO production and inducible nitric oxide synthase protein levels via the inhibition of the nuclear factor (NF)-κB pathway. Additionally, EACEE suppressed redundant reactive oxygen species production and regulated nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling. Furthermore, EACEE significantly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). Overall, these results indicate that EACEE exerts anti-inflammatory and antioxidant effects via the activation of Nrf2/HO-1 and inhibition of NF-κB/p38 MAPK signaling.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 370 ◽  
Author(s):  
Ching-Hou Ma ◽  
Chin-Hsien Wu ◽  
I-Ming Jou ◽  
Yuan-Kun Tu ◽  
Ching-Hsia Hung ◽  
...  

Osteoarthritis (OA) is one of the most common types of arthritis in the elderly people. It has been known that chondrocyte apoptosis occurs in OA cartilage; however, the detailed molecular mechanism remains unclear. In the current study, we aimed to elucidate the role of double-stranded RNA-dependent protein kinase R (PKR) in the TNF-α-caused apoptosis in chondrocytes. Human articular chondrocytes were digested from cartilages of OA subjects who accepted arthroplastic knee surgery. Our results showed that phosphorylation of p38 MAPK was increased after TNF-α stimulation or PKR activation using poly (I:C), and TNF-α-induced p38 MAPK upregulation was inhibited by PKR inhibition, suggesting phosphor-p38 MAPK was regulated by PKR. Moreover, we found that PKR participated in the p53-dependent destruction of AKT following activation of p38 MAPK. The inhibition of AKT led to the reduced expression of PGC-1α, which resulted in mitochondrial dysfunction and increased oxidative stress. We showed that the reduction of oxidative stress using antioxidant Mito TEMPO lowered the TNF-α-induced caspase-3 activation and TUNEL-positive apoptotic cells. The diminished apoptotic response was also observed after repression of PKR/p38 MAPK/p53/AKT/PGC-1α signaling. Taken together, we demonstrated that the aberrant mitochondrial biogenesis and increased oxidative stress in chondrocytes after TNF-α stimulation were mediated by PKR, which may contribute to the chondrocyte apoptosis and cartilage degeneration in OA.


2008 ◽  
Vol 83 (4) ◽  
pp. 982-990 ◽  
Author(s):  
S. Wang ◽  
J. Zhang ◽  
Y. Zhang ◽  
S. Kern ◽  
R. L. Danner
Keyword(s):  
P38 Mapk ◽  

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Hsuan-Ti Huang ◽  
Tsung-Lin Cheng ◽  
Cheng-Jung Ho ◽  
Han Hsiang Huang ◽  
Cheng-Chang Lu ◽  
...  

(-)-Epigallocatechin 3-gallate (EGCG) is the main active green tea catechin and has a wide variety of benefits for health. Post-traumatic osteoarthritis (PTOA) occurs as a consequence of joint injuries that commonly happen in the young population. In this study, we investigated the effects of EGCG on PTOA prevention by using the anterior cruciate ligament transection (ACLT)–OA model and further investigated the roles of autophagy in OA treatment. Our results showed that intra-articular injection of EGCG significantly improved the functional performances and decreased cartilage degradation. EGCG treatment attenuated the inflammation on synovial tissue and cartilage through less immunostained cyclooxygenase-2 and matrix metalloproteinase-13. We further noted EGCG may modulate the chondrocyte apoptosis by activation of the cytoprotective autophagy through reducing the expression of the mTOR and enhancing the expression of microtubule-associated protein light chain 3, beclin-1, and p62. In conclusion, intra-articular injection of EGCG after ACL injury inhibited the joint inflammation and cartilage degradation, thereby increasing joint function. EGCG treatment also reduced the chondrocyte apoptosis, possibly by activating autophagy. These findings suggested that EGCG may be a potential disease-modifying drug for preventing OA progression.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2425-2425
Author(s):  
Laura Sommerville ◽  
Maureane Hoffman

Abstract Tissue factor (TF) is a high-affinity receptor for FVII/FVIIa that serves as a key initiator of hemostasis and is thought to also play a functional role in angiogenesis. Elevated TF expression has been linked to upregulated angiogenesis in malignant tumors, while reducing TF expression in experimental tumor models results in decreased angiogenesis. Although these data suggest that high TF expression is critical for angiogenesis, we have reported that TF expression declines significantly in pericytes that surround angiogenic vessels at sites of wound healing. This is the only known example of active TF downregulation, suggesting that pericytes regulate their expression of TF by a unique mechanism. Additionally, TF expression increases in response to many mediators, yet none that decrease TF expression have been described. The goal of this study was to characterize TF downregulation in pericytes and identify mediators of this process. We have previously shown that TF expression in primary cultures of human pericytes is not affected by treatment with various growth factors or inflammatory stimuli, but decreases significantly in response to phorbol 12-myristate 13-acetate (PMA). PMA triggers degradation of TF protein and inhibition of TF mRNA synthesis, both in a Protein Kinase C (PKC)- dependent manner. To identify other signaling molecules in this pathway we used chemical inhibitors to block the activity of signaling molecules downstream of PKC before adding PMA to pericyte cultures. Inhibition of NF-kB, ERK1/2, AKT, JNK, and p38 MAPK did not block degradation of TF protein. However, pericytes that received a p38 inhibitor (SB202190) alone demonstrated significant reduction of TF mRNA. Treatment with SB202190 followed by PMA produced an additive effect on TF mRNA reduction. Western blotting showed that prolonged PMA treatment (>4 hours) produced a sustained decrease in p38 phosphorylation. These data suggest that PMA inhibits p38 activity, and that p38 confers stability to TF mRNA. We have previously found that basic Fibroblast Growth Factor (bFGF) triggers downregulation of pericyte TF a co-culture system with human microvascular endothelial cells. However, transferring bFGF-conditioned endothelial cell media to pericytes cultured alone failed to reproduce TF loss. bFGF has been shown to stimulate nitric oxide (NO) production, and both bFGF and NO have been linked to angiogenesis. This led us to consider NO as a potential labile mediator of TF downregulation. ±6.1%, p<0.01). However, expression of TF mRNA was not reduced at this time, as it is during culture with PMA. Pericytes treated with DETA NO demonstrated sustained p38 phosphorylation for up to 8 hours. Taken together, these data suggest that DETA NO downregulates TF protein but maintains basal levels of TF mRNA, potentially in a p38-dependent manner. Based on these data, we hypothesize that the p38 signaling axis is a key component of a unique pathway of TF regulation in pericytes, and that endothelial nitric oxide contributes to downregulation of pericyte TFin vivo at sites of physiologic angiogenesis. Disclosures Hoffman: Novo Nordisk A/S: Consultancy, Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document