Pathogenic Effects of M. tuberculosis-Specific Proteins ESAT-6 and CFP-10 in Macrophage Culture and in 3D-Granulemogenesis Model In Vitro

2021 ◽  
Vol 171 (5) ◽  
pp. 656-660
Author(s):  
S. N. Belogorodtsev ◽  
E. K. Nemkova ◽  
N. V. Stavitskaya ◽  
Ya. Sh. Schwartz
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bharti Patel ◽  
Subrata Mishra ◽  
Indira K. Priyadarsini ◽  
Sirisha L. Vavilala

Abstract Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 μg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30–60% inhibition of biofilm formation in K. pneumonia, and 44–70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.


2008 ◽  
Vol 48 (supplement) ◽  
pp. S82-S83
Author(s):  
Ryoichi Nakamuta ◽  
Hiroyuki Ainobu ◽  
Masaya Wada ◽  
Taketsune Matsuzaki ◽  
Yushi Oishi ◽  
...  

2006 ◽  
Vol 13 (6) ◽  
pp. 611-619 ◽  
Author(s):  
W. R. Waters ◽  
M. V. Palmer ◽  
T. C. Thacker ◽  
J. B. Payeur ◽  
N. B. Harris ◽  
...  

ABSTRACT Cross-reactive responses elicited by exposure to nontuberculous mycobacteria often confound the interpretation of antemortem tests for Mycobacterium bovis infection of cattle. The use of specific proteins (e.g., ESAT-6, CFP-10, and MPB83), however, generally enhances the specificity of bovine tuberculosis tests. While genes for these proteins are absent from many nontuberculous mycobacteria, they are present in M. kansasii. Instillation of M. kansasii into the tonsillar crypts of calves elicited delayed-type hypersensitivity and in vitro gamma interferon and nitrite concentration responses of leukocytes to M. avium and M. bovis purified protein derivatives (PPDs). While the responses of M. kansasii-inoculated calves to M. avium and M. bovis PPDs were approximately equivalent, the responses of M. bovis-inoculated calves to M. bovis PPD exceeded their respective responses to M. avium PPD. The gamma interferon and nitrite responses of M. kansasii-inoculated calves to recombinant ESAT-6-CFP-10 (rESAT-6-CFP-10) exceeded corresponding responses of noninoculated calves as early as 15 and 30 days after inoculation, respectively, and persisted throughout the study. The gamma interferon and nitrite responses of M. bovis-inoculated calves to rESAT-6-CFP-10 exceeded the corresponding responses of M. kansasii-inoculated calves beginning 30 days after inoculation. By using a lipoarabinomannan-based enzyme-linked immunosorbent assay, specific serum antibodies were detected as early as 50 days after challenge with M. kansasii. By a multiantigen print immunoassay and immunoblotting, serum antibodies to MPB83, but not ESAT-6 or CFP-10, were detected in M. kansasii-inoculated calves; however, responses to MPB83 were notably weaker than those elicited by M. bovis infection. These findings indicate that M. kansasii infection of calves elicits specific responses that may confound the interpretation of bovine tuberculosis tests.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 325-338
Author(s):  
Elizabeth J. Thornber ◽  
Marilyn B. Renfree ◽  
Gregory I. Wallace

The in vitro uptake and incorporation of [3H]ui idine by blastocysts of the tammar wallaby showed a 16- and 30-fold increase from day 0 to day 10 after removal of pouch young, respectively. Two of the six non-expanded blastocysts recovered on day 5 showed a tenfold increase in incorporation. During the first ten days after removal of pouch young the diameter of the blastocyst increased threefold. Endometrial exudate from gravid uteri had a higher protein concentration than exudate from nongravid uteri (39·5 ± 0·9 and 32·0 ± 2·0 mg/ml (mean ± s.e.m.), respectively). Endometrial exudates from uteri where the blastocyst was actively growing were found to contain six uterine-specific proteins. These were separated by gradient polyacrylamide gel electrophoresis. Two of the proteins were pre-albumins and the others were larger molecules (M.W. 153000–670000). Two proteins were only present at particular stages of pregnancy: the other four were present at all stages from diapause to birth, in exudate from gravid and nongravid uteri. The specific binding of progesterone and androstenedione to proteins in endometrial exudates or uterine flushings from pregnant wallabies was less than one per cent of the value obtained from day-5 pregnant rabbits. The ability of mouse blastocysts to take up and incorporate [3H]uridine into acidinsoluble material increased threefold in the presence of day-10 endometrial exudates from wallabies. However, this was less than ten percent of the values obtained in the presence of bovine serum albumin. The concentration of calcium in endometrial exudates increased from 23·6 to 45·2 μg/ml during pregnancy; in endometrium it remained at 88·7 μg/g (wet weight) throughout pregnancy, and in plasma it was 53·3 μg/ml. The concentration of zinc in endometrial exudates was 4·5 μg/ml; in endometrium it decreased from 21·8 to 13·3 μg/g (wet weight) during pregnancy and in plasma it was 0·6 μg/ml.


2020 ◽  
Author(s):  
Shun Kubota ◽  
Hiroshi Doi ◽  
Shigeru Koyano ◽  
Kenichi Tanaka ◽  
Shingo Ikeda ◽  
...  

Abstract Intracellular aggregates are a common pathological hallmark of neurodegenerative diseases such as polyglutamine (polyQ) diseases, amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple system atrophy (MSA). Aggregates are mainly formed by aberrant disease-specific proteins and are accompanied by accumulation of other aggregate-interacting proteins. Although aggregate-interacting proteins have been considered to modulate the formation of aggregates and to be involved in molecular mechanisms of disease progression, the components of aggregate-interacting proteins remain unknown. In this study, we showed that small glutamine-rich tetratricopeptide repeat-containing protein alfa (SGTA) is an aggregate-interacting protein in neurodegenerative diseases. Immunohistochemistry showed that SGTA interacted with intracellular aggregates in Huntington disease (HD) cell models and neurons of HD model mice. We also revealed that SGTA colocalized with intracellular aggregates in postmortem brains of patients with polyQ diseases including spinocerebellar ataxia (SCA)1, SCA2, SCA3, and dentatorubral–pallidoluysian atrophy. In addition, SGTA colocalized with glial cytoplasmic inclusions in the brains of MSA patients, whereas no accumulation of SGTA was observed in neurons of PD and ALS patients. In vitro study showed that SGTA bound to polyQ aggregates through its C-terminal domain and SGTA overexpression reduced intracellular aggregates. These results suggest that SGTA may play a role in the formation of aggregates and may act as potential modifier of molecular pathological mechanisms of polyQ diseases and MSA.


2021 ◽  
Vol 15 (6) ◽  
pp. 594-603
Author(s):  
V. A. Pozdina ◽  
U. V. Zvedeninova ◽  
M. V. Ulitko ◽  
I. G. Danilova ◽  
M. T. Abidov

2000 ◽  
Vol 38 (7) ◽  
pp. 2611-2621 ◽  
Author(s):  
Joppe W. R. Hovius ◽  
K. Emil Hovius ◽  
Anneke Oei ◽  
Dirk J. Houwers ◽  
Alje P. van Dam

In an area where Lyme disease is endemic in The Netherlands all dogs had positive titers by whole-cell enzyme-linked immunosorbent assay and appeared to be naturally infected by Borrelia burgdorferi sensu lato. To compare the antibody responses of symptomatic dogs and asymptomatic controls, we performed Western blots and in vitro immobilization assays to study antibody-dependent bactericidal activity. Strains from three different genospecies were employed as the antigen source: B. burgdorferi strain B31,Borrelia garinii strain A87S, and Borrelia afzelii strain pKo. Antibodies against flagellin (p41) and p39 for three strains were found in sera from both symptomatic and asymptomatic dogs and were therefore considered to be markers of exposure. Antibodies against p56 and p30 of strain B31, against p75, p58, p50, OspC, and p<19 of strain A87S, and against p56, p54, p45, OspB, p31, p26, and p<19 of strain pKo were found significantly more frequently in sera from symptomatic dogs younger than 8 years when the first symptoms were observed than in those from age-matched controls (P < 0.01). These antibodies were not found in preclinical sera and appeared during development of disease. Antibodies against OspA of strains B31 and A87S were only seen in acute-phase and convalescent sera from three dogs that recovered from disease. Incubation with 25% normal canine serum did not result in the immobilization of strains B31 and pKo, but partial immobilization of strain A87S (61% ± 24% [standard deviation] at 5 h) occurred. Seven of 15 sera from symptomatic dogs but none of the sera from 11 asymptomatic dogs had antibody-dependent immobilizing activity against one of the strains. Consecutive sera from one of these dogs immobilized two different strains. Antibody-mediated bactericidal serum was not seen before onset of disease, was strongest in the acute phase of disease, and fluctuated during chronic disease. From seven out of eight symptomatic dogs Borrelia DNA was amplified by PCR; in three of them the bactericidal activity was directed against one of the genospecies amplified from that dog; however, four PCR-positive dogs lacked bactericidal activity. In conclusion, dogs with symptomatic canine borreliosis have more-extensive antibody reactivity against Borrelia, as shown by both Western blotting and immobilization assays.


2006 ◽  
Vol 6 (3) ◽  
pp. 348-351 ◽  
Author(s):  
Taghi Naserpour Fari . ◽  
Amir Hossein Mohaghe . ◽  
Shahram Shahraki Zah . ◽  
Mohammad Naderi . ◽  
Batul Sharifi Moud .

Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4169-4177 ◽  
Author(s):  
Adeline Lepage ◽  
Marylène Leboeuf ◽  
Jean-Pierre Cazenave ◽  
Corinne de la Salle ◽  
François Lanza ◽  
...  

Abstract Megakaryocytopoiesis is a complex multistep process involving cell division, endoreplication, and maturation and resulting in the release of platelets into the blood circulation. Megakaryocytes (MK) progressively express lineage-restricted proteins, some of which play essential roles in platelet physiology. Glycoprotein (GP)Ib-V-IX (CD42) and GPIIb (CD41) are examples of MK-specific proteins having receptor properties essential for platelet adhesion and aggregation. This study defined the progressive expression of the GPIb-V-IX complex during in vitro MK maturation and compared it to that of GPIIb, an early MK marker. Human cord blood CD34+ progenitor cells were cultured in the presence of cytokines inducing megakaryocytic differentiation. GPIb-V-IX expression appeared at day 3 of culture and was strictly dependent on MK cytokine induction, whereas GPIIb was already present in immature CD34+ cells. Analysis by flow cytometry and of the messenger RNA level both showed that GPV appeared 1 day later than GPIb-IX. Microscopy studies confirmed the late appearance of GPV, which was principally localized in the cytoplasm when GPIb-IX was found on the cell surface, suggesting a delayed program of GPV synthesis and trafficking. Cell sorting studies revealed that the CD41+GPV+ population contained 4N and 8N cells at day 7, and was less effective than CD41+GPV− cells in generating burst-forming units of erythrocytes or MK colonies. This study shows that the subunits of the GPIb-V-IX complex represent unique surface markers of MK maturation. The genes coding for GPIb-IX and GPV are useful tools to study megakaryocytopoiesis and for tissue-specific or conditional expression in mature MK and platelets.


Sign in / Sign up

Export Citation Format

Share Document