Life Cycles of Ground Beetles (Coleoptera, Carabidae) from the Mountain Taiga and Mountain Forest-Steppe in the Eastern Sayan

2005 ◽  
Vol 32 (6) ◽  
pp. 571-575 ◽  
Author(s):  
L. Ts. Khobrakova ◽  
I. Kh. Sharova
2018 ◽  
Vol 8 (2) ◽  
pp. 348-353
Author(s):  
E. A. Kuchina ◽  
N. D. Ovcharenko ◽  
L. D. Vasileva

<p>Anthropogenic impact on the population of ground beetles leads to a change in their numbers, structure of dominance, density, species composition, spectrum of life forms. This makes the beetles Carabidae a convenient and informative bioindicator of the ecological state of biocenoses. The material for this work was the Carabidae collections conducted in June-August 2016-2017 in the park zone of different regions of Barnaul, differing in location, area, hydrological regime, vegetation cover, purpose and anthropogenic load. When processing the material, the quantitative, species and generic composition of the carabidae was determined, calculations were made for such indicators as the Berger-Parker dominance index, the Shannon species diversity index (Hs), and the Jacquard species similarity index. The fauna (Coleoptera, Carabidae) of the park zone of Barnaul is represented by 55 species belonging to 20 genera. The dominant group is represented by species belonging to steppe, forest and polyzonal groups. Forest-steppe species of ground beetles as dominants have not been identified in any of the investigated territories. The greatest variety of ecological groups was noted on the territory of the Yubileyny рark, which is explained by the presence of zones with various microclimatic conditions, the presence of a birch grove that flows through the park with the Pivovarka River, and a wide log in the park. Registered species belong to eight groups of life forms belonging to two classes - zoophagous and myxophytophagous. On the numerical and species abundance, zoophages predominate. The spectrum of life forms corresponds to the zonal spectrum characteristic of the forest-steppe zone.</p><p> </p>


2020 ◽  
pp. 13-26
Author(s):  
Ya. M. Golovanov ◽  
L. M. Abramova

The synthaxonomy and ecology of communities with predominance of Hordeum jubatum L., included in the «black list» of the Republic of Bashkortostan (Abramova, Golovanov, 2016a), the preliminary «black list» of the Orenburg Region (Abramova et al., 2017) and the «Black book of flora of Middle Russia» (Vinogradova et al., 2010), are discussed in the article, which continues a series of publications on the classification of communities with alien species in the South Urals (Abramova, 2011, 2016; Abramova, Golovanov, 2016b). H. jubatum was first found in the South Urals in 1984 as an adventive plant occurring along streets in the town of Beloretsk, as well as in gardens where it was grown as an ornamental plant. During the 1980s, it was met also at some railway stations and in several rural localities. Its active distribution throughout the South Urals started in XXI century (Muldashev et al., 2017). Currently, H. jubatum, most naturalized in the native salted habitats of the steppe zone, is often found in disturbed habitats in all natural zones within the region. The short vegetating period and resistance to drought allowed it to be naturalized also in dry steppes, where it increasingly acts as the main weed on broken pastures. The aim of the work, conducted during 2011–2017, was further finding the centers of H. jubatum invasion in 3 regions adjacent to the South Urals — the Republic of Bashkortostan and the Chelyabinsk and Orenburg Regions (Fig. 1). In the main sites of H. jubatum invasion 71 relevès were performed on 10–100 m² sample plots with the information of location, date, the plot size, the total cover, average and maximum height of herb layer. Classification was carried out following the Braun-Blanquet method (Braun-Blanquet, 1964) with using the Kopecký–Hejný approach (Kopecký, Hejný, 1974). The community ecology was assessed by weighted average values according to the optimal ecological scales by E. Landolt with usfge of the software of IBIS (Zverev, 2007). PCA-ordination method with usage CANOCO 4.5 software package was applied to identify patterns of environmental differentiation of invasive communities. The current wide distribution area of H. jubatum and its naturalization in synanthropic, meadow and saline communities in the South Urals, as well as its occurrence within mountain-forest belt, forest-steppe and steppe zones both in the Cis- and Trans-Urals, indicates species wide ecological amplitude, high adaptive capability and invasive potential. Its vast thickets are known in the steppe zone, both in disturbed steppes around settlements and along the banks of water bodies. The invasion sites are smaller in the northern regions and mountain forest belt, where these are located in settlements or along communication lines. Therefore, the steppe zone is more favorable for invasive populations, and their distribution will continue from the south to the north. Communities with predominance of H. jubatum, described earlier (Abramova, Golovanov, 2016b) in the Cis-Urals as two derivative communities (associations Hordeum jubatum [Scorzonero–Juncetea gerardii], Hordeum jubatum [Artemisietea]) and Polygono avicularis–Hordeetum jubati, were met in other regions of the South Urals. Also a new derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati], occuring in the northern part of the Cis-Urals and Trans-Urals, was established. In new habitats this species forms three types of communities: ass. Polygono avicularis–Hordeetum jubati (Fig. 2) the most widespread in anthropogenic habitats throughout the South Urals; derivative community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii] (Fig. 5) which replaces saline meadows mainly in the steppe zone of the region; derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (Fig. 4) which y replaces low-herb meadows in the forest-steppe zone and mountain-forest belt. PCA ordination (Fig. 6) shows that moisture (H) and soil richness-salinization (S) factors are in priority in differentiation of communities with predominance H. jubatum. The first axis is mainly related to the salinization and soil richness. The community pattern along the second axis is associated with wetting factor. The cenoses of the derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (less salted substrates in drier conditions in the northern part of the forest-steppe zone and the mountain forest belt) are grouped in the upper part of the ordination diagram, while communities of ass. Polygono avicularis–Hordeetum jubati (drier conditions in settlements, the steppe zone) in its low left part. Thus, axis 1 also reflects the intensity of trampling. Another group is formed by cenoses of the derivate community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii], (salt substrates with a high level of moisturization, on not very damaged water body banks). All communities with H. jubatum are well differentiated in the space of the main ordination axes that indirectly confirms the correctness of our syntaxonomic decision. Undoubted is further expansion of H. jubatum with its entering both anthropogenic and natural plant communities within the South Urals that suggests a constant monitoring in centers of species invasion.


2002 ◽  
pp. 32-43
Author(s):  
V. I. Vlasenko ◽  
M. G. Erunova ◽  
I. S. Scerbinina

The reserve “Stolby” is characteristic key plot of the mountain-taiga and subtaiga-forest steppe altitudinal belts in the East Sayan Mountains, where anthropogenic influence is the least pronounced. It was founded in 1925, in 15 km southward of Krasnoyarsk city, on north-west spurs of the Western Sayan Mountains which adjoin closely to right bank of the Yenisei River bordering upon the Middle Siberian Plateau. Reserve's physiography is characterized by low mountain and middle mountain erosion-accumulation relief with absolute heights of 200-800 m. Low mountain part (200-500 m) is composed of loose sedimentary rocks. In the middle mountain part of the reserve (500-800 m) there are outcrops of sienite rocks of various stages of destruction. Vegetation and soils of the reserve change in agreement with absolute heights and climate. In low mountains spread the subtaiga and forest-steppe leaved-light needle forests on mountain grey forest soils (8.1 % of reserve territory); the middle mountain part is occupied by the light needle and dark needle taiga forests on mountain podzol soils (91.9 % of the area). As the basement for vegetation map we took the map of forest environments of reserve by T. N. Butorina compiled according to materials of land forest management of 1977 year. As the result of forest management near 2000 biogeocoenoses were distinguished. The type of biogeocoenosis, according to V. N. Sukachev, is selected as mapping unit. Biogeocoenoses were united into 70 groups of forest types, representing 21 series of associations which are reflected in the map legend (Fig. 1). The main goal of map is to show the territorial distribution of groups and series of types of biogeocoenoses in the main structural units - altitudinal be't complexes (ВПК) which are equivalents of altitudinal vegetation belts. For designation of forest tree species various kinds of hatches were used. Formations of Siberian pine, larch, pine, fir, spruce, birch and aspen forests are shown on the map. Within the ВПК arabic numerals show the groups of types of biogeocoenoses (forest types), united into series according to similarity of dominants in ground layer. The mountain-taiga ВПК includes the following series and groups of types of biogeocoenoses: dwarf-shrub-moss (1-4); sedge-moss (5-9); bilberry-low herb-moss (10-14); tall herb-sedge (15-19); tall herb-wood sour-moss (20-26); tall herb-small reed (27-32). The subtaiga-forest steppe ВГ1К embraces: shrub steppificated (33-34); shrub-forb steppificated (35-38): sedge- bilberry (39-40); sedge-forb (41-43); bracken (44); small reed-forb (45); bilberrv-forb- sedge (46, 47); forb-tall herb (48-51); tall herb (52-55); wet tall herb-small reed (56-59); fern-tall herb (60). Intrazonal phytocoenoses: brook tall herb (61-63); brook shrub (64-68); lichen-moss (69); cowberry (70). In 1999-2000 on the base of topographic map in a scale 1 : 25 000, map of forest environments, transformed by us into vegetation map of the reserve, M. J . Erunova and I. S. Scerbinina worked out an electronic variant. For this project the instrumental facilities of GIS, GeoDraw and GeoGraph (CGI IG RAS, Moscow) and programs of Geophyt were used.


2000 ◽  
pp. 26-31
Author(s):  
E. I. Parfenova ◽  
N. M. Chebakova

Global climate warming is expected to be a new factor influencing vegetation redistribution and productivity in the XXI century. In this paper possible vegetation change in Mountain Altai under global warming is evaluated. The attention is focused on forest vegetation being one of the most important natural resources for the regional economy. A bioclimatic model of correlation between vegetation and climate is used to predict vegetation change (Parfenova, Tchebakova 1998). In the model, a vegetation class — an altitudinal vegetation belt (mountain tundra, dark- coniferous subalpine open woodland, light-coniferous subgolets open woodland, dark-coniferous mountain taiga, light-coniferous mountain taiga, chern taiga, subtaiga and forest-steppe, mountain steppe) is predicted from a combination of July Temperature (JT) and Complex Moisture Index (CMI). Borders between vegetation classes are determined by certain values of these two climatic indices. Some bioclimatic regularities of vegetation distribution in Mountain Altai have been found: 1. Tundra is separated from taiga by the JT value of 8.5°C; 2. Dark- coniferous taiga is separated from light-coniferous taiga by the CMI value of 2.25; 3. Mountain steppe is separated from the forests by the CMI value of 4.0. 4. Within both dark-coniferous and light-coniferous taiga, vegetation classes are separated by the temperature factor. For the spatially model of vegetation distribution in Mountain Altai within the window 84 E — 90 E and 48 N — 52 N, the DEM (Digital Elevation Model) was used with a pixel of 1 km resolution. In a GIS Package IDRISI for Windows 2.0, climatic layers were developed based on DEM and multiple regressions relating climatic indices to physiography (elevation and latitude). Coupling the map of climatic indices with the authors' bioclimatic model resulted into a vegetation map for the region of interest. Visual comparison of the modelled vegetation map with the observed geobotanical map (Kuminova, 1960; Ogureeva, 1980) showed a good similarity between them. The new climatic indices map was developed under the climate change scenario with summer temperature increase 2°C and annual precipitation increase 20% (Menzhulin, 1998). For most mountains under such climate change scenario vegetation belts would rise 300—400 m on average. Under current climate, the dark-coniferous and light-coniferous mountain taiga forests dominate throughout Mountain Altai. The chern forests are the most productive and floristically rich and are also widely distributed. Under climate warming, light-coniferous mountain taiga may be expected to transform into subtaiga and forest-steppe and dark-coniferous taiga may be expected to transform partly into chern taiga. Other consequences of warming may happen such as the increase of forest productivity within the territories with sufficient rainfall and the increase of forest fire occurrence over territories with insufficient rainfall.


2020 ◽  
Author(s):  
Nina Tiralla ◽  
Maika Holzapfel ◽  
Hermann Ansorge

AbstractThe increasing animosity towards wolves (Canislupus) by livestock-keeping nomads in Mongolia and the accompanying conflicts highlight the urgent need for knowledge about the feeding behavior of wolves, since information on the feeding ecology of wolves in Mongolia is rare, especially in the mountain taiga and mountain forest steppe regions of Northern Mongolia. Those regions are characterized by a relatively high wildlife diversity and are sparsely populated by humans. To face this problem, 137 wolf scats were collected in the Khentii Mountain range in Northern Mongolia between 2008 and 2012. Almost all wolf faeces contained remnants of wild ungulates, which made up 89% of the consumed biomass. Siberian roe deer (Capreoluspygargus) was the most important and positively selected prey species. It was followed by red deer (Cervuselaphus) and wild boar (Susscrofa), which was negatively selected by wolves. Wolves also fed on buffer prey species such as lagomorphs and small mammals. No evidence of domestic ungulates was found in the wolf diet. Thus, near-natural habitats with a diverse fauna of wild animals are important to limit livestock depredation.


Author(s):  
B. Gantuya ◽  
Á. Avar ◽  
D. Babai ◽  
Á. Molnár ◽  
Zs Molnár

Abstract Background Traditional habitat knowledge, like the classification of folk habitats and how people partition their landscape into habitats, is an emerging but still understudied part of traditional ecological knowledge. Our objectives were to reconstruct the folk habitats and the partitioning of the landscape into these folk habitats by Mongolian herders in Northern Mongolia and to compare it with other Northern Hemisphere boreal-temperate classifications. Methods The study area is located in Seruun Gilad (Khuvsugul province) and belongs to the mountain forest steppe of the Khangai region (dominated by meadow steppes and larch forests). Most herder families use the area for summer pasturing. Data collection was based on indoor and outdoor, structured and semi-structured interviews and interviews during landscape walks and participatory fieldwork. We interviewed 20 people using 76+ photos of plant species and 25+ photos of habitats and asked them to name and describe the habitats and describe the habitat preferences of the species. Results Mongolian herders distinguished at least 88 folk habitat categories and knew well the habitat preferences of the 76 plant species. They argued that a herder has to be observant of nature. The habitat classification was moderately lexicalized, with many descriptive expressions. Most habitats (77%) belonged to the meso-scale, while macro-scale habitats (like taiga, Gobi) and micro-scale habitats (like marmot burrow, top of the tussock) were few. Habitat names did not reflect directly the usefulness of the habitat. Classification was multidimensional; key dimensions were geomorphological and edaphic. There were some species (e.g., botyuul, hyag, shireg) and species groups (hot plants, leafy plants) that were often used to describe habitat types. Conclusions Landscape partitionings in the Northern Hemisphere differed considerably in the importance of various dimensions used, with edaphic, geomorphological, hydrological, and dominant species-based dimensions having higher importance, while land use, successional, and zoological dimensions having lower importance. We argue that conducting research on folk habitats will contribute to a deeper understanding of how nature is perceived by locals and to a more efficient management of the Mongolian pastures.


2017 ◽  
Vol 41 ◽  
pp. 24-33 ◽  
Author(s):  
Alexander Gradel ◽  
Christina Haensch ◽  
Batsaikhan Ganbaatar ◽  
Batdorj Dovdondemberel ◽  
Ochirragchaa Nadaldorj ◽  
...  

2020 ◽  
Author(s):  
Natalia Shkaeva ◽  
Artyom Shkaev ◽  
Viktor Budarkov

&lt;p&gt;The Chelyabinsk region is located in various geographical countries and zones: the Ural-mountainous country and the West Siberian low-lying country, which, in turn, occupy the mountain-forest, forest-steppe and steppe zones. The tense ecological situation of the region is associated with radioactive and intense technogenic pollution of the territory. Excess of the natural radiation background in the territory occurred after a major radiation accident in Kyshtym, which formed the East Ural Radioactive Trace (EURT), which was formed mainly in the Ural-mountain physiographic region in the north of the region. Industrial pollution caused by industrial emissionslarge enterprises and soil degradation as a result of mining operations.&amp;#160; In general, the EURT covered 384 settlements ( 29.7%) in the Chelyabinsk region .&lt;/p&gt;&lt;p&gt;The aim of this work is to assess the contribution of natural, radionuclide, and technogenic factors to the level and risk of the spread of cattle leukemia in the Chelyabinsk region , one of the most disadvantaged Russian regions for this disease. cattle. Objects of research: cattle of black-motley breed, calves of different ages, fattening young animals, lactating cows. The monitoring duration was 1993-2018 years. On the EURT and in the zone of influence of the Techa and Bagaryak rivers, 5 regions of the Chelyabinsk region were investigated: Argayashsky, Kaslinsky, Krasnoarmeysky, Kunashaksky and Sosnovsky. The control for them was another 23 districts that were not contaminated with radioactive fallout after the accident at the Mayak Production Association.&amp;#160;&lt;/p&gt;&lt;p&gt;A statistically significant association was established between the degree of radioactive contamination of the territory of the Chelyabinsk region and the intensity of the epizootic situation in cattle leukemia. The degree of influence of factors of the natural and socio-economic background on the frequency of occurrence and the extent of damage to animals from the disease is calculated. For the first time, simulation models are presented reflecting the relationship between the density of radionuclide contamination and the frequency of registration of dysfunctional sites, the number of infected VLCKR, patients rejected due to leukemia of animals. Cartograms of the spatial distribution of indicators of the relative registration frequency (stationarity index) and leukemia livestock infection rate were compiled. A comparative analysis of the cartograms of the epizootic situation with the maps of technogenic pollution, the state of the natural and socio-economic background established the confinement of the highest values &amp;#8203;&amp;#8203;of the situation tension to regions of high technogenic pollution, including radioactive (urbanized areas), with intensive dairy farming of forest and forest-steppe landscape zones. Using elements of logical modeling in the form of a logical function of nonlinear logical multiplication of the probability model of the occurrence of the disease and the model of the possible infection of the livestock with leukemia, 5 zones of epizootological risk were identified in the Chelyabinsk region for the period until 2020 . The areas of highest epizootological risk are the northern most urbanized areas of the region.&lt;/p&gt;


2020 ◽  
Vol 222 ◽  
pp. 03024
Author(s):  
A.E. Panfilov ◽  
N.I. Kazakova ◽  
N.N. Zezin ◽  
E.L. Tikhanskaya ◽  
P.Yu. Ovchinnikov

As a result of expeditionary-route studies, the impoverishment of the composition of the segetal flora in maize crops was established when moving from the North-West to the South-East of the Ural region: from 37 species in the forest-meadow and mountain-forest zones to 10 in the steppe zone. Zonal features of the composition of weed communities associated with the hydrothermal gradient consist in the mutual substitution of annual monocotyledonous and dicotyledonous species with a stable contribution of perennial dicotyledons, as well as the replacement of mesophytic weeds with xerophytic species of the same families. A comparison of cross-spectrum herbicides effectiveness in the forest-steppe and forest-meadow zones showed the advantages of a post-emergent preparation with soil effect of Meister Power. In temperate soil fertility in the Southern area of the region, it is economically feasible to use post-emergent herbicides without soil effect, in Northern areas with stable moisture – soil ones.


Sign in / Sign up

Export Citation Format

Share Document