Geobotanical mapping of vegetation in "Stolby" Reserve

2002 ◽  
pp. 32-43
Author(s):  
V. I. Vlasenko ◽  
M. G. Erunova ◽  
I. S. Scerbinina

The reserve “Stolby” is characteristic key plot of the mountain-taiga and subtaiga-forest steppe altitudinal belts in the East Sayan Mountains, where anthropogenic influence is the least pronounced. It was founded in 1925, in 15 km southward of Krasnoyarsk city, on north-west spurs of the Western Sayan Mountains which adjoin closely to right bank of the Yenisei River bordering upon the Middle Siberian Plateau. Reserve's physiography is characterized by low mountain and middle mountain erosion-accumulation relief with absolute heights of 200-800 m. Low mountain part (200-500 m) is composed of loose sedimentary rocks. In the middle mountain part of the reserve (500-800 m) there are outcrops of sienite rocks of various stages of destruction. Vegetation and soils of the reserve change in agreement with absolute heights and climate. In low mountains spread the subtaiga and forest-steppe leaved-light needle forests on mountain grey forest soils (8.1 % of reserve territory); the middle mountain part is occupied by the light needle and dark needle taiga forests on mountain podzol soils (91.9 % of the area). As the basement for vegetation map we took the map of forest environments of reserve by T. N. Butorina compiled according to materials of land forest management of 1977 year. As the result of forest management near 2000 biogeocoenoses were distinguished. The type of biogeocoenosis, according to V. N. Sukachev, is selected as mapping unit. Biogeocoenoses were united into 70 groups of forest types, representing 21 series of associations which are reflected in the map legend (Fig. 1). The main goal of map is to show the territorial distribution of groups and series of types of biogeocoenoses in the main structural units - altitudinal be't complexes (ВПК) which are equivalents of altitudinal vegetation belts. For designation of forest tree species various kinds of hatches were used. Formations of Siberian pine, larch, pine, fir, spruce, birch and aspen forests are shown on the map. Within the ВПК arabic numerals show the groups of types of biogeocoenoses (forest types), united into series according to similarity of dominants in ground layer. The mountain-taiga ВПК includes the following series and groups of types of biogeocoenoses: dwarf-shrub-moss (1-4); sedge-moss (5-9); bilberry-low herb-moss (10-14); tall herb-sedge (15-19); tall herb-wood sour-moss (20-26); tall herb-small reed (27-32). The subtaiga-forest steppe ВГ1К embraces: shrub steppificated (33-34); shrub-forb steppificated (35-38): sedge- bilberry (39-40); sedge-forb (41-43); bracken (44); small reed-forb (45); bilberrv-forb- sedge (46, 47); forb-tall herb (48-51); tall herb (52-55); wet tall herb-small reed (56-59); fern-tall herb (60). Intrazonal phytocoenoses: brook tall herb (61-63); brook shrub (64-68); lichen-moss (69); cowberry (70). In 1999-2000 on the base of topographic map in a scale 1 : 25 000, map of forest environments, transformed by us into vegetation map of the reserve, M. J . Erunova and I. S. Scerbinina worked out an electronic variant. For this project the instrumental facilities of GIS, GeoDraw and GeoGraph (CGI IG RAS, Moscow) and programs of Geophyt were used.

2000 ◽  
pp. 26-31
Author(s):  
E. I. Parfenova ◽  
N. M. Chebakova

Global climate warming is expected to be a new factor influencing vegetation redistribution and productivity in the XXI century. In this paper possible vegetation change in Mountain Altai under global warming is evaluated. The attention is focused on forest vegetation being one of the most important natural resources for the regional economy. A bioclimatic model of correlation between vegetation and climate is used to predict vegetation change (Parfenova, Tchebakova 1998). In the model, a vegetation class — an altitudinal vegetation belt (mountain tundra, dark- coniferous subalpine open woodland, light-coniferous subgolets open woodland, dark-coniferous mountain taiga, light-coniferous mountain taiga, chern taiga, subtaiga and forest-steppe, mountain steppe) is predicted from a combination of July Temperature (JT) and Complex Moisture Index (CMI). Borders between vegetation classes are determined by certain values of these two climatic indices. Some bioclimatic regularities of vegetation distribution in Mountain Altai have been found: 1. Tundra is separated from taiga by the JT value of 8.5°C; 2. Dark- coniferous taiga is separated from light-coniferous taiga by the CMI value of 2.25; 3. Mountain steppe is separated from the forests by the CMI value of 4.0. 4. Within both dark-coniferous and light-coniferous taiga, vegetation classes are separated by the temperature factor. For the spatially model of vegetation distribution in Mountain Altai within the window 84 E — 90 E and 48 N — 52 N, the DEM (Digital Elevation Model) was used with a pixel of 1 km resolution. In a GIS Package IDRISI for Windows 2.0, climatic layers were developed based on DEM and multiple regressions relating climatic indices to physiography (elevation and latitude). Coupling the map of climatic indices with the authors' bioclimatic model resulted into a vegetation map for the region of interest. Visual comparison of the modelled vegetation map with the observed geobotanical map (Kuminova, 1960; Ogureeva, 1980) showed a good similarity between them. The new climatic indices map was developed under the climate change scenario with summer temperature increase 2°C and annual precipitation increase 20% (Menzhulin, 1998). For most mountains under such climate change scenario vegetation belts would rise 300—400 m on average. Under current climate, the dark-coniferous and light-coniferous mountain taiga forests dominate throughout Mountain Altai. The chern forests are the most productive and floristically rich and are also widely distributed. Under climate warming, light-coniferous mountain taiga may be expected to transform into subtaiga and forest-steppe and dark-coniferous taiga may be expected to transform partly into chern taiga. Other consequences of warming may happen such as the increase of forest productivity within the territories with sufficient rainfall and the increase of forest fire occurrence over territories with insufficient rainfall.


2020 ◽  
Vol 62 (2) ◽  
pp. 100-113
Author(s):  
Oleksandr Bondar ◽  
Maksym Rumiantsev ◽  
Liudmyla Tkach ◽  
Iryna Obolonyk

AbstractThe aim of the study was to determine the distribution of prevailing forest types within the catchment areas of the biggest rivers in the north-east of Ukraine. During the allocation of the catchment areas of the studied rivers, the MapInfo Professional 12.5 program and the vector map of Ukraine were used. The research covered the forest area (more than 502,000 ha) of the state forest enterprises managed by the State Forest Resources Agency of Ukraine. The studied area located on the tributaries of the Sula, Psel, Vorskla and Siversky Donets rivers within the Poltava, Kharkiv, Sumy, Chernihiv, Kyiv and Cherkasy administrative regions of Ukraine. The analysis of the forest fund was carried out based on the electronic subcompartment database of the Ukrderzhlisproekt Production Association, using the application software and geoinformation technologies. It was revealed that a large variety of forest types in the tributaries of the Sula, Psel, Vorskla and Siversky Donets rivers as well as the prevalence of fresh fertile maple-lime oak and fresh fairly infertile oak-pine forest types (in 75 tributaries of Psel, Vorskla and Siversky Donets rivers) and fresh fertile maple-lime oak and fresh fertile hornbeam oak forest types (in 20 tributaries of the Sula River) are due to the relief, hydrological and soil-climatic conditions of the studied area, as well as anthropogenic factor. Assuming homogeneous natural conditions, an insignificant number of forest types are formed (up to five). For a large variety of natural conditions, there are at least six forest types that should be taken into account during forest management, along with the characteristics of the catchment areas of tributaries. The analysed data on the total number of forest types in the catchments of rivers would be appropriate to use in the future when creating a single list of forest types for the Left-Bank Forest-Steppe zone of Ukraine. The prevalence of certain forest types within the catchment areas of tributaries of the Sula, Psel, Vorskla and Siversky Donets rivers directly depends on the soil and climatic conditions, geomorphological structure, relief and anthropogenic influence in the forests. The results should be used in forest management activities to preserve and restore the species diversity of forests within the river catchments.


Author(s):  
V. P. Tkach ◽  
O. V. Kobets ◽  
M. G. Rumiantsev

The forest site capacity using was quantitatively assessed for the stands of the main forest-forming species of Ukraine, Scots pine and common oak, taking into account natural zones and forest types. The tables of productivity of modal and highly productive pine and oak stands have been developed. It has been found that the stands use an average of 50–75 % of the forest site capacity of lands. The average weighted value of the capacity used by pine forests was 68–76 % in the Polissya zone, 70–78 % and 68–73 % in the Right-bank and Left-bank Forest-Steppe zones respectively, and 54–78 % in the Steppe zone. For oak stands, the value was 71–75 % and 63–71 % for the Right-bank and Left-bank Forest-Steppe zones respectively and 65–75 % for the Steppe zone. The basis for increasing the productivity of forests was confirmed to be the differentiation of forest management systems and individual forestry activities on a zonal and typological basis.


Author(s):  
Kezang Choden ◽  
Bhagat Suberi ◽  
Purna Chettri

Forests are natural carbon reservoirs that play an important role in the global carbon cycle for storing large quantities of carbon in vegetation and soils. Carbon stored in pool helps in mitigating climate change by carbon sequestration. The vulnerable countries to changing climate such as Bhutan, Nepal, and India require a full understanding of carbon dynamics as well as baseline data on carbon stock potential to mitigate anticipated risks and vulnerabilities (RVs) through climate change. The scope of such RVs are trans boundary in nature, however, the comparative studies at regional scale are still scanty. Therefore, the aim of this review is to assess the carbon stock potentials of selected forest types in the eastern Himalayan area, with an emphasis on Bhutan, India, and Nepal. This review paper is based on published articles, information from websites and considerable data from National forestry reports of India and Bhutan; emphasizing on aboveground biomass and soil organic carbon stock. The review showed that carbon stock potential is highly dependent on stand density, above-ground biomass, species richness and forest types. The sub-tropical forest was found to have larger carbon capacity and sequestration potential. SOC concentration and tree biomass stocks were significantly higher at the high altitude where there is less human disturbance. In general, forest coverage has increased compare to previous year in Bhutan, India and Nepal which ultimately leads to higher carbon stock potential. It is mainly due to strong policies and different strategies for conservation of forest management have reduced mass destruction despite a growing population. Despite the rules, deforestation continues to occur at various scales. However, it can be stated that the government and citizens are working hard to increase carbon stock potential, mostly through afforestation and community forest creation. In addition, it is recommended to practice sustainable forest management, regulated and planned cutting of trees and proper forest products utilization.


2013 ◽  
Vol 864-867 ◽  
pp. 2459-2462
Author(s):  
Zong Han Li ◽  
Hua Yong Zhang ◽  
Fei Li ◽  
Xiang Xu

In this study, fractal dimension index is applied to describe the complexity of 11 vegetation groups and 5 needle-leaf forest vegetation types in China. Basing on the Vegetation Map of China, we calculate the perimeter and area of vegetation patches with the software ArcGis. The relationship between perimeter and area is established for each vegetation group and vegetation type, and the corresponding fractal dimension index is estimated. The results show that, among the 11 vegetation groups, the Alpine vegetation is the most complex vegetation. In the 5 needle-leaf forest types, the subtropical and tropical mountains needle-leaf forest is the most complex vegetation. It seems that the complexity of vegetation is associated with altitude. The topography may be responsible for the complexity at different scales.


Koedoe ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
Elizabeth J. Opperman ◽  
Michael I. Cherry ◽  
Nokwanda P. Makunga

Forests in South Africa are harvested by local communities for multiple purposes and this affects the animals that inhabit them. The tree hyrax (Dendrohyrax arboreus) has a restricted distribution and utilises various tree species as dens and a source of food. In this article, we determined, through a series of interviews in the communities surrounding the Pirie forest, which plant species are harvested by local people and whether these overlap with those used by the tree hyrax. In addition, we determined the extent to which tree hyraxes are hunted by these communities. Of the trees used by the hyrax as dens in the Pirie forest, Afrocarpus falcatus, Schotia latifolia, Andrachne ovalis, Teclea natalensis and Apodytes dimidiata are important resources for local communities. But as these are harvested at relatively low levels, it is unlikely that current harvesting has a large impact on the tree hyrax. Opportunistic hunting occurs, but the hyrax is not targeted by hunters. Very limited commercial harvesting of A. falcatus has been taking place in the Pirie forest since 1975, but its impact on the hyrax population, although undetermined, is also unlikely to be high. We recommend that the Pirie forest tree hyrax population should be monitored by forest management in order to ascertain the impact of both commercial and community harvesting over the past quarter-century.Conservation implications: Tree hyrax populations in the Pirie forest should be actively monitored by management on an annual basis.


Sign in / Sign up

Export Citation Format

Share Document