Reduction of galactose inhibition via the mutation of β-galactosidase from Caldicellulosiruptor saccharolyticus for lactose hydrolysis

2010 ◽  
Vol 33 (2) ◽  
pp. 353-358 ◽  
Author(s):  
Yeong-Su Kim ◽  
Soo-Jin Yeom ◽  
Deok-Kun Oh
3 Biotech ◽  
2018 ◽  
Vol 8 (11) ◽  
Author(s):  
Zhiwei Zhang ◽  
Fenghua Zhang ◽  
Liya Song ◽  
Ning Sun ◽  
Weishi Guan ◽  
...  

2018 ◽  
pp. 19-20
Author(s):  
V.P. Panov ◽  
◽  
M.N. Koverda ◽  
B.G. Gavrilov ◽  
S.A. Kucherenkov ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 527
Author(s):  
Katarzyna Czyzewska ◽  
Anna Trusek

The current requirements of industrial biocatalysis are related to economically beneficial and environmentally friendly processes. Such a strategy engages low-temperature reactions. The presented approach is essential, especially in food processes, where temperature affects the quality and nutritional value foodstuffs. The subject of the study is the hydrolysis of lactose with the commercial lactase NOLA™ Fit 5500 (NOLA). The complete decomposition of lactose into two monosaccharides gives a sweeter product, recommended for lactose intolerant people and those controlling a product’s caloric content. The hydrolysis reaction was performed at 15 °C, which is related to milk transportation and storage temperature. The enzyme showed activity over the entire range of substrate concentrations (up to 55 g/L lactose). For reusability and easy isolation, the enzyme was encapsulated in a sodium alginate network. Its stability allows carrying out six cycles of the complete hydrolysis of lactose to monosaccharides, lasting from two to four hours. During the study, the kinetic description of native and encapsulated NOLA was conducted. As a result, the model of competitive galactose inhibition and glucose mixed influence (competitive inhibition and activation) was proposed. The capsule size does not influence the reaction rate; thus, the substrate diffusion into capsules can be omitted from the process description. The prepared 4 mm capsules are easy to separate between cycles, e.g., using sieves.


1998 ◽  
Vol 22 (7) ◽  
pp. 558-567 ◽  
Author(s):  
A. Santos ◽  
M. Ladero ◽  
F. Garcı́a-Ochoa

2017 ◽  
Vol 18 (0) ◽  
Author(s):  
Camila Sampaio Cutrim ◽  
Raphael Ferreira de Barros ◽  
Robson Maia Franco ◽  
Marco Antonio Sloboda Cortez

Abstract The purpose of this study was to evaluate the behavior of E. coli O157:H7 during lactose hydrolysis and fermentation of traditional and low lactose yogurt. It also aimed to verify E. coli O157:H7 survival after 12 h of storage at 4 ºC ±1 ºC. Two different types of yogurts were prepared, two with whole milk and two with pre-hydrolyzed whole milk; in both groups one yogurt was inoculated with E. coli O157:H7 and the other one was not inoculated. The survival of E. coli and pH of yogurt were determined during fermentation and after 12-h refrigeration. The results showed that E. coli O157:H7 was able to grow during the fermentation period (from 4.34 log CFU.mL-1 to 6.13 log CFU.mL-1 in traditional yogurt and 4.34 log CFU.mL-1 to 6.16 log CFU.mL-1 in low lactose yogurt). The samples with E. coli O157:H7 showed gas formation and syneresis. Thus, E. coli O157:H7 was able to survive and grow during fermentation of traditional and low lactose yogurts affecting the manufacture technology. Moreover, milk contamination by E. coli before LAB addition reduces the growth of L. bulgaricus and S. thermophilus especially when associated with reduction of lactose content.


2020 ◽  
Author(s):  
Bruna Coelho de Andrade ◽  
Luis Fernando Saraiva Macedo Timmers ◽  
Gaby Renard ◽  
Giandra Volpato ◽  
Claucia Fernanda Volken de Souza

Author(s):  
Graciella da Silva Campello ◽  
Renata Aguirre Trindade ◽  
Tatiane Vieira Rêgo ◽  
Janaína Fernandes de Medeiros Burkert ◽  
Carlos André Veiga Burkert

Abstract The main goal of this study was to investigate the immobilization of commercial ß-galactosidase from Kluyveromyces lactis (Lactozym®) on Eupergit® C. A Plackett-Burman design was proposed. The ionic strength and pH were the variables that presented significant effect (p<0.1) on immobilization. The increase in the ionic strength from 0.1 to 1.5 M and the increase in pH from 6.6 to 7.4 represented an increase of 28.56% and a reduction of 18.19% in the immobilization yield, respectively. At 25°C, pH 6.6, ionic strength of 1.5 M, immobilization for 8 h, 1 mM of divalent magnesium ion and 0.4 mL of enzyme added, reached 85% immobilization yield. The free and immobilized enzymes were characterized. pH and temperature profiles showed maximum activity at pH 6.6 and 45°C, for both free and immobilized enzymes. There was a gain in thermal stability with enzyme immobilization and there was an increase of about four times in the half-life of the immobilized derivative at 45°C (from 0.43 h to 1.78 h). This greater thermal stability was also made clear through the calculation of thermodynamic parameters (ΔH, ΔG and ΔS). Km values, 30.33 mM and 104.00 mM for free and immobilized enzymes, respectively, represented a reduction in substrate affinity after immobilization, possibly owing to stereo-conformational factors. In a batch reactor for lactose hydrolysis from cheese whey, an increase in lactose conversion with immobilization was observed at 40°C and 45°C (90.43% and 65.36%, respectively) in relation to the free enzyme (84.17% and 39.58%, respectively).


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Xu ◽  
Dongmei Han ◽  
Zhaohui Xu

The ability ofThermotogaspp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA) and Csac_1078 (celB) fromCaldicellulosiruptor saccharolyticuswere cloned intoT.sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA) and TM0070 (xynB), resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried byThermotoga-E. colishuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed inE. coliDH5αandT.sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. InE. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas inT.sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost inT.sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study) have ever been expressed inThermotoga, demonstrating the feasibility of using engineeredThermotogaspp. for efficient cellulose utilization.


Sign in / Sign up

Export Citation Format

Share Document