scholarly journals Expression of Heterologous Cellulases inThermotogasp. Strain RQ2

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Xu ◽  
Dongmei Han ◽  
Zhaohui Xu

The ability ofThermotogaspp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA) and Csac_1078 (celB) fromCaldicellulosiruptor saccharolyticuswere cloned intoT.sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA) and TM0070 (xynB), resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried byThermotoga-E. colishuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed inE. coliDH5αandT.sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. InE. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas inT.sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost inT.sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study) have ever been expressed inThermotoga, demonstrating the feasibility of using engineeredThermotogaspp. for efficient cellulose utilization.

2020 ◽  
Vol 54 (1 (251)) ◽  
pp. 55-62
Author(s):  
H.Kh. Gevorgyan

In this study anaerobic utilization of mixed carbon sources (glucose, glycerol, formate) and generation of fermentation end-products by Escherichia coli at slightly alkaline and slightly acidic pHs was investigated at the first time. It has been shown that E. coli is able to perform co-fermentation of glucose and glycerol in the presence of external formate. The latter was utilized by bacterial cells at first. Acetate is the permanent product (25–50 mM) during both glucose and glycerol utilization. It has been revealed that composition of fermentation end-products depends not only on external pH, but also on co-utilization of substrates.


2007 ◽  
Vol 189 (11) ◽  
pp. 4180-4186 ◽  
Author(s):  
Augusto Bellomio ◽  
Paula A. Vincent ◽  
Beatriz F. de Arcuri ◽  
Ricardo N. Farías ◽  
Roberto D. Morero

ABSTRACT Microcin J25 (MccJ25) uptake by Escherichia coli requires the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbD, ExbB, and SbmA. MccJ25 appears to have two intracellular targets: (i) RNA polymerase (RNAP), which has been described in E. coli and Salmonella enterica serovars, and (ii) the respiratory chain, reported only in S. enterica serovars. In the current study, it is shown that the observed difference between the actions of microcin on the respiratory chain in E. coli and S. enterica is due to the relatively low microcin uptake via the chromosomally encoded FhuA. Higher expression by a plasmid-encoded FhuA allowed greater uptake of MccJ25 by E. coli strains and the consequent inhibition of oxygen consumption. The two mechanisms, inhibition of RNAP and oxygen consumption, are independent of each other. Further analysis revealed for the first time that MccJ25 stimulates the production of reactive oxygen species (O2·−) in bacterial cells, which could be the main reason for the damage produced on the membrane respiratory chain.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 806
Author(s):  
Olga E. Melkina ◽  
Vladimir A. Plyuta ◽  
Inessa A. Khmel ◽  
Gennadii B. Zavilgelsky

A broad spectrum of volatile organic compounds’ (VOCs’) biological activities has attracted significant scientific interest, but their mechanisms of action remain little understood. The mechanism of action of two VOCs—the cyclic monoterpenes (−)-limonene and (+)-α-pinene—on bacteria was studied in this work. We used genetically engineered Escherichia coli bioluminescent strains harboring stress-responsive promoters (responsive to oxidative stress, DNA damage, SOS response, protein damage, heatshock, membrane damage) fused to the luxCDABE genes of Photorhabdus luminescens. We showed that (−)-limonene induces the PkatG and PsoxS promoters due to the formation of reactive oxygen species and, as a result, causes damage to DNA (SOSresponse), proteins (heat shock), and membrane (increases its permeability). The experimental data indicate that the action of (−)-limonene at high concentrations and prolonged incubation time makes degrading processes in cells irreversible. The effect of (+)-α-pinene is much weaker: it induces only heat shock in the bacteria. Moreover, we showed for the first time that (−)-limonene completely inhibits the DnaKJE–ClpB bichaperone-dependent refolding of heat-inactivated bacterial luciferase in both E. coli wild type and mutant ΔibpB strains. (+)-α-Pinene partially inhibits refolding only in ΔibpB mutant strain.


2019 ◽  
Vol 35 (6) ◽  
pp. 67-72 ◽  
Author(s):  
I.V. Manukhov ◽  
L.S. Yaguzhinsky ◽  
M.V. Bermeshev ◽  
M.A. Zisman ◽  
V.G. Pevgov ◽  
...  

Toxic effect of 2-ethylnorbornane (2-ethyl(bicyclo[2.2.1]heptane) (EBH)) on bacteria has been studied using the E. coli pRecA-lux and E. coli pKatG- lux cells as lux-biosensors. It was shown that the addition of EBH to the incubation medium leads to death and growth retardation, high level oxidative stress and DNA damage in E. coli cells. It is assumed that the oxidation of EBH with atmospheric oxygen causes the formation of reactive oxygen species in the medium, which makes a major contribution to the toxicity of this substance. biosensor, luciferase, bioluminescence, inducible promoter, PrecA, PkatG The authors are grateful to Stanislav Filippovich Chalkin for the development of interdisciplinary ties in the scientific community. The work was financially supported by the Ministry of Higher Education and Science of Russia (Project Unique Identifier RFMEFI60417X0181, Agreement No. 14.604.21.0181 of 26.09.2017).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lan N. Truong ◽  
Brayden D. Whitlock

AbstractControlling infections has become one of the biggest problems in the world, whether measured in lives lost or money spent. This is worsening as pathogens continue becoming resistant to therapeutics. Antimicrobial surfaces are one strategy being investigated in an attempt to decrease the spread of infections through the most common route of transmission: surfaces, including hands. Regulators have chosen two hours as the time point at which efficacy should be measured. The objectives of this study were to characterize the new antimicrobial surface compressed sodium chloride (CSC) so that its action may be understood at timepoints more relevant to real-time infection control, under two minutes; to develop a sensitive method to test efficacy at short time points; and to investigate antifungal properties for the first time. E. coli and Candida auris are added to surfaces, and the surfaces are monitored by contact plate, or by washing into collection vats. An improved method of testing antimicrobial efficacy is reported. Antimicrobial CSC achieves at least 99.9% reduction of E. coli in the first two minutes of contact, and at least 99% reduction of C. auris in one minute.


2021 ◽  
Vol 14 (5) ◽  
pp. 414
Author(s):  
Neda Aničić ◽  
Uroš Gašić ◽  
Feng Lu ◽  
Ana Ćirić ◽  
Marija Ivanov ◽  
...  

Two Balkan Peninsula endemics, Nepeta rtanjensis and N. argolica subsp. argolica, both characterized by specialized metabolite profiles predominated by iridoids and phenolics, are differentiated according to the stereochemistry of major iridoid aglycone nepetalactone (NL). For the first time, the present study provides a comparative analysis of antimicrobial and immunomodulating activities of the two Nepeta species and their major iridoids isolated from natural sources—cis,trans-NL, trans,cis-NL, and 1,5,9-epideoxyloganic acid (1,5,9-eDLA), as well as of phenolic acid rosmarinic acid (RA). Methanol extracts and pure iridoids displayed excellent antimicrobial activity against eight strains of bacteria and seven strains of fungi. They were especially potent against food-borne pathogens such as L. monocytogenes, E. coli, S. aureus, Penicillium sp., and Aspergillus sp. Targeted iridoids were efficient agents in preventing biofilm formation of resistant P. aeruginosa strain, and they displayed additive antimicrobial interaction. Iridoids are, to a great extent, responsible for the prominent antimicrobial activities of the two Nepeta species, although are probably minor contributors to the moderate immunomodulatory effects. The analyzed iridoids and RA, individually or in mixtures, have the potential to be used in the pharmaceutical industry as potent antimicrobials, and in the food industry to increase the shelf life and safety of food products.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 539
Author(s):  
Alexey L. Kayushin ◽  
Julia A. Tokunova ◽  
Ilja V. Fateev ◽  
Alexandra O. Arnautova ◽  
Maria Ya. Berzina ◽  
...  

During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3′-deoxyinosine catalyzed by E. coli purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2′,3′-anhydroinosine, a byproduct in the preparation of 3-′deoxyinosine. Moreover, 2′,3′-anhydroinosine forms during radical dehalogenation of 9-(2′,5′-di-O-acetyl-3′-bromo- -3′-deoxyxylofuranosyl)hypoxanthine, a precursor of 3′-deoxyinosine in chemical synthesis. The products of 2′,3′-anhydroinosine hydrolysis inhibit the formation of 1-phospho-3-deoxyribose during the synthesis of 2-fluorocordycepin. The progress of 2′,3′-anhydroinosine hydrolysis was investigated. The reactions were performed in D2O instead of H2O; this allowed accumulating intermediate substances in sufficient quantities. Two intermediates were isolated and their structures were confirmed by mass and NMR spectroscopy. A mechanism of 2′,3′-anhydroinosine hydrolysis in D2O is fully determined for the first time.


2021 ◽  
Vol 11 (6) ◽  
pp. 2708
Author(s):  
Jurgita Švedienė ◽  
Vitalij Novickij ◽  
Rokas Žalnėravičius ◽  
Vita Raudonienė ◽  
Svetlana Markovskaja ◽  
...  

For the first time, the possibility to use L-lysine (Lys) and poly-L-lysine (PLL) as additives with pulsed electric fields (PEF) for antimicrobial treatment is reported. The antimicrobial efficacy of Lys and PLL for Escherichia coli, Staphylococcus aureus, Trichophyton rubrum and Candida albicans was determined. Inactivation of microorganisms was also studied by combining Lys and PLL with PEF of 15 and 30 kV/cm. For PEF treatment, pulses of 0.5, 1, 10 or 100 μs were applied in a sequence of 10 to 5000 at 1 kHz frequency. The obtained results showed that 100 μs pulses were the most effective in combination with Lys and PLL for all microorganisms. Equivalent energy PEF bursts with a shorter duration of the pulse were less effective independently on PEF amplitude. Additionally, various treatment susceptibility patterns of microorganisms were determined and reported. In this study, the Gram-negative E. coli was the most treatment-resistant microorganism. Nevertheless, inactivation rates exceeding 2 log viability reduction were achieved for all analyzed yeast, fungi, and bacteria. This methodology could be used for drug-resistant microorganism’s new treatment development.


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2257-2266 ◽  
Author(s):  
Helmuth Adelsberger ◽  
Christian Hertel ◽  
Erich Glawischnig ◽  
Vladimir V. Zverlov ◽  
Wolfgang H. Schwarz

Four extracellular enzymes of the thermophilic bacterium Clostridium stercorarium are involved in the depolymerization of de-esterified arabinoxylan: Xyn11A, Xyn10C, Bxl3B, and Arf51B. They were identified in a collection of eight clones producing enzymes hydrolysing xylan (xynA, xynB, xynC), β-xyloside (bxlA, bxlB, bglZ) and α-arabinofuranoside (arfA, arfB). The modular enzymes Xyn11A and Xyn10C represent the major xylanases in the culture supernatant of C. stercorarium. Both hydrolyse arabinoxylan in an endo-type mode, but differ in the pattern of the oligosaccharides produced. Of the glycosidases, Bxl3B degrades xylobiose and xylooligosaccharides to xylose, and Arf51B is able to release arabinose residues from de-esterified arabinoxylan and from the oligosaccharides generated. The other glycosidases either did not attack or only marginally attacked these oligosaccharides. Significantly more xylanase and xylosidase activity was produced during growth on xylose and xylan. This is believed to be the first time that, in a single thermophilic micro-organism, the complete set of enzymes (as well as the respective genes) to completely hydrolyse de-esterified arabinoxylan to its monomeric sugar constituents, xylose and arabinose, has been identified and the enzymes produced in vivo. The active enzyme system was reconstituted in vitro from recombinant enzymes.


2021 ◽  
Vol 2021 (11) ◽  
pp. pdb.prot101212 ◽  
Author(s):  
Michael R. Green ◽  
Joseph Sambrook

This protocol describes a convenient method for the preparation, use, and storage of competent Escherichia coli. The reported transformation efficiency of this method is ∼5 × 107 transformants/µg of plasmid DNA.


Sign in / Sign up

Export Citation Format

Share Document