Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine

BioMetals ◽  
2012 ◽  
Vol 25 (6) ◽  
pp. 1195-1206 ◽  
Author(s):  
Jamile F. Gonçalves ◽  
Marta M. M. F. Duarte ◽  
Amanda M. Fiorenza ◽  
Roselia M. Spanevello ◽  
Cinthia M. Mazzanti ◽  
...  
Heliyon ◽  
2021 ◽  
pp. e07366
Author(s):  
Vamitha Paneerselvam Sampathkumar ◽  
Prathipa Krishnamurthy ◽  
Saravanan Balaraman ◽  
Dhivya Balaiya ◽  
Ravi Sivaraman ◽  
...  

2018 ◽  
Vol 7 (8) ◽  
pp. 196 ◽  
Author(s):  
Abdurrahman Sahin ◽  
Hakan Artas ◽  
Nurettin Tunc ◽  
Mehmet Yalniz ◽  
Ibrahim Bahcecioglu

Portal hypertension (PHT) leads to several alterations on hematological indices (HI). The aim of the study is to investigate the differences in HI between cirrhotic subjects and subjects who have noncirrhotic PHT (NCPHT). This retrospective study included 328 patients with PHT (239 cirrhosis and 89 NCPHT). Demographic and clinical features, endoscopic and radiological findings, and HI including neutrophil to lymphocyte ratio (NLR) at the time of PHT diagnosis were recorded. Severity of cirrhosis was assessed according to the Child–Turcotte–Pugh (CTP) classification and Model for End-Stage Liver Disease (MELD) scores. Hematological abnormalities were found in 92.5% of cirrhotic patients and in 55.1% of patients with NCPHT (p < 0.001). While thrombocytopenia was the most common HI in patients with cirrhosis, anemia was the most prevalent HI in NCPHT group. In the cirrhotic group, the NLR was the only parameter to differentiate each CTP group from two others. The NLR value increased with the severity of cirrhosis (2.28 ± 0.14 in CTP-A, 2.85 ± 0.19 in CTP-B and 3.26 ± 0.37 in CTP-C). The AUROC of NLR was 0.692 for differentiating compensated cirrhotic patients from decompensated. Hematological abnormalities are more prevalent and more severe in cirrhotic patients compared to patients with NCPHT. NLR may be used to assess the severity of cirrhosis.


2018 ◽  
Vol 29 (6) ◽  
pp. 609-619 ◽  
Author(s):  
Lucky Legbosi Nwidu ◽  
Yibala I. Oboma ◽  
Ekramy Elmorsy ◽  
Wayne Grant Carter

Abstract Background Glyphae brevis leaf is reported in ethnomedicine as a treatment for hepatitis and jaundice; however, no studies have hitherto investigated the mechanistic basis of these claims. Methods A hepato-protective role of G. brevis hydromethanolic (GBH) leaf extract was established against carbon tetrachloride (CCl4)-induced hepatotoxicity. Twenty-four hours after a CCl4 challenge, rats were sacrificed and serum hematological indices, lipid profile, and biochemical parameters were determined. The antioxidant enzymes parameters (glutathione, catalase, and superoxide dismutase) and lipid peroxidation product (thiobarbituric reactive substances) levels in liver homogenates were evaluated. Changes in the liver cyto-architecture of different treatment groups were also investigated. Results The GBH extract produced no significant impact on weight and hematological indices. Intoxication with CCl4 significantly (p<0.001–0.05) increased total cholesterol (TC) and low-density lipoproteins (LDL) compared with control rats. Pretreatment with GBH leaf extract significantly reduced triglycerides, TC, and LDL to approaching control levels (p<0.001–0.05). The GBH leaf extract significantly alleviated CCl4-induced elevation of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and the CCl4-induced depression of total protein, and albumin. Liver antioxidant parameters were significantly increased in plant extract-treated rats, and this antagonized the pro-oxidant effect of CCl4. Histopathological studies also supported a hepato-protective effect of GBH. Collectively, the GBH leaf extract alleviated the CCl4-induced hepatotoxicity through improvement of innate antioxidant enzyme levels and lipid metabolism and stabilized the hepatocyte cyto-architecture of intoxicated rats. Conclusions This study establishes the ethnomedicinal role of G. brevis leaf in hepatitis and the mechanistic basis of hepato-protection against CCl4-induced hepatotoxicity.


2018 ◽  
Vol 13 (3) ◽  
pp. 91-101
Author(s):  
D. V. Borsakova ◽  
M. E. Plakhotnik ◽  
L. D. Koleva ◽  
E. A. Bovt ◽  
Yu. G. Alexandrovich ◽  
...  

Background. L-asparaginase is an enzyme, widely used in the therapy of acute lymphoblastic leukemia in children and adults, but its use is limited due to a wide range of side effects and anaphylactic reactions. L-asparaginase loaded into erythrocytes can solve these problems. This enzyme is protected from the immune system and plasma proteases due to erythrocyte membrane, but continues to work inside the cell because its membrane is permeable to L-asparagine. Thus, the half-life of the drug increases and anaphylactic reactions reduce. The encapsulation of L-asparaginase into erythrocytes can be performed by various osmotic methods. Each of them is characterized by the amount of encapsulated enzyme, the cell yield, as well as by the quality indices of the survived erythrocytes. An important parameter of each method is the possibility to provide sterility of this dosage form for the clinical use.The aim of the study was the comparing of three osmotic methods of L-asparaginase encapsulation into erythrocytes (hypo-osmotic lysis, dialysis and flow dialysis) to select the most promising method for clinical use.Materials and methods. A suspension of erythrocytes of healthy donors (hematocrit 60–70%) was mixed with L-asparaginase from E. сoli. The procedures of hypotonic reversible lysis, dialysis in dialysis bags, or flow dialysis using pediatric dialyzers were performed. The physiological osmolality was restored in suspensions after the procedure by the addition of a hypertonic solution, and they were incubated for 30 min at 37 °C. Then the cells were washed in isotonic phosphate-buffered saline with pH 7.4. Activity of L-asparaginase, volume, hematocrit, hematological indices and osmotic cell fragility of erythrocytes were measured in the suspensions of erythrocytes before and after the enzyme encapsulation procedure.Results. An optimal osmolality of the hypotonic buffer for each method was selected and was equal to 90–110 mOsm/kg. The yields of encapsulation were 4.2 ± 2.0, 6.0 ± 2.3 and 16.2 ± 2.2 % for hypotonic lysis, dialysis and flow dialysis, respectively. The hematological indices of the obtained erythrocyte-carriers differed from the corresponding parameters of the initial erythrocytes, but did not differ significantly for different methods.Conclusion. Comparative investigation of mentioned above parameters allowed choosing the method of flow dialysis as the most promising for clinical use.


2018 ◽  
Vol 5 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Said Said Elshama ◽  
Metwally E. Abdallah ◽  
Rehab I. Abdel-Karim

Despite the widespread application of zinc oxide nanoparticles in biomedicine, their use is still a controversial issue. Zinc oxide nanoparticles were reported to have therapeutic benefits. However, they were reported to have toxicological hazards as well. Several studies reported the antibacterial, anticancer, antioxidant, and immunomodulatory effects of zinc oxide nanoparticles. Additionally, zinc oxide nanoparticles were used in sunscreens. Furthermore, the ability to use zinc oxide nanoparticles as an adjuvant treatment to alleviate the toxic effects of chemotherapeutic drugs has been reported. However, zinc oxide nanoparticles were shown to induce toxic effects in different body organs and systems. The affected organs included liver, spleen, kidney, stomach, pancreas, heart and lung. In addition, zinc oxide nanoparticles were reported to adversely affect the neurological system, lymphatic system, hematological indices, sex hormones levels, and fetal development. The toxic effects of zinc oxide nanoparticles were based on their concentration, their dose, the route of their administration, and the time of exposure to those particles. Thus, it is crucial to assess their efficacy and safety to determine their toxicological risks and therapeutic benefits.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1656
Author(s):  
Emanuel Moisa ◽  
Dan Corneci ◽  
Silvius Negoita ◽  
Cristina Raluca Filimon ◽  
Andreea Serbu ◽  
...  

Background: Hematological indices can predict disease severity, progression, and death in patients with coronavirus disease-19 (COVID-19). Objectives: To study the predictive value of the dynamic changes (first 48 h after ICU admission) of the following ratios: neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), monocyte-to-lymphocyte (MLR), systemic inflammation index (SII), and derived neutrophil-to-lymphocyte (dNLR) for invasive mechanical ventilation (IMV) need and death in critically ill COVID-19 patients. Methods: Observational, retrospective, and multicentric analysis on 272 patients with severe or critical COVID-19 from two tertiary centers. Hematological indices were adjusted for confounders through multivariate analysis using Cox regression. Results: Patients comprised 186 males and 86 females with no difference across groups (p > 0.05). ΔNLR > 2 had the best independent predictive value for IMV need (HR = 5.05 (95% CI, 3.06–8.33, p < 0.0001)), followed by ΔSII > 340 (HR = 3.56, 95% CI 2.21–5.74, p < 0.0001) and ΔdNLR > 1 (HR = 2.61, 95% CI 1.7–4.01, p < 0.0001). Death was also best predicted by an NLR > 11 (HR = 2.25, 95% CI: 1.31–3.86, p = 0.003) followed by dNLR > 6.93 (HR = 1.89, 95% CI: 1.2–2.98, p = 0.005) and SII > 3700 (HR = 1.68, 95% CI: 1.13–2.49, p = 0.01). Conclusions: Dynamic changes of NLR, SII, and dNLR independently predict IMV need and death in critically ill COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document