scholarly journals Fifty Years of Atmospheric Boundary-Layer Research at Cabauw Serving Weather, Air Quality and Climate

2020 ◽  
Vol 177 (2-3) ◽  
pp. 583-612 ◽  
Author(s):  
Fred C. Bosveld ◽  
Peter Baas ◽  
Anton C. M. Beljaars ◽  
Albert A. M. Holtslag ◽  
Jordi Vilà-Guerau de Arellano ◽  
...  

Abstract An overview is given of 50-year Cabauw observations and research on the structure and dynamics of the atmospheric boundary layer. It is shown that over time this research site with its 200-m meteorological tower has grown into an atmospheric observatory with a comprehensive observational program encompassing almost all aspects of the atmospheric column including its boundary conditions. This is accomplished by the Cabauw Experimental Site for Atmospheric Research (CESAR) a consortium of research institutes. CESAR plays an important role in the educational programs of the CESAR universities. The current boundary-layer observational program is described in detail, and other parts of the CESAR observational program discussed more briefly. Due to an open data policy the CESAR datasets are used by researchers all over the world. Examples are given of the use of the long time series for model evaluation, satellite validation, and process studies. The role of tall towers is discussed in relation to the development of more and better ground-based remote sensing techniques. CESAR is now incorporated into the Ruisdael observatory, the large-scale atmospheric research infrastructure in the Netherlands. With Ruisdael the embedding of the Dutch atmospheric community in national policy landscape, and in the European atmospheric research infrastructures is assured for the coming decade.

2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


2012 ◽  
Vol 12 (13) ◽  
pp. 5827-5839 ◽  
Author(s):  
B. Chen ◽  
X. D. Xu ◽  
S. Yang ◽  
T. L. Zhao

Abstract. The Asian Summer Monsoon (ASM) region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST), which can significant impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL) to tropopause layer (TL) over these regions, particularly from a climatological perspective, remain an issue of uncertainty. In this study, we present the climatological properties of BL-to-TL transport over the ASM region during boreal summer season (June-July-August) from 2001 to 2009. A comprehensive tracking analysis is conducted based on a large ensemble of TST-trajectories departing from the atmospheric BL and arriving at TL. Driven by the winds fields from NCEP/NCAR Global Forecast System, all the TST-trajectories are selected from the high resolution datasets generated by the Lagrangian particle transport model FLEXPART using a domain-filling technique. Three key atmospheric boundary layer sources for BL-to-TL transport are identified with their contributions: (i) 38% from the region between tropical Western Pacific region and South China Seas (WP) (ii) 21% from Bay of Bengal and South Asian subcontinent (BOB), and (iii) 12% from the Tibetan Plateau, which includes the South Slope of the Himalayas (TIB). Controlled by the different patterns of atmospheric circulation, the air masses originated from these three source regions are transported along the different tracks into the TL. The spatial distributions of three source regions keep similarly from year to year. The timescales of transport from BL to TL by the large-scale ascents r-range from 1 to 7 weeks contributing up to 60–70% of the overall TST, whereas the transport governed by the deep convection overshooting become faster on a timescales of 1–2 days with the contributions of 20–30%. These results provide clear policy implications for the control of very short lived substances, especially for the source regions over Indian subcontinent with increasing populations and developing industries.


2007 ◽  
Vol 76 (2) ◽  
Author(s):  
M. Kholmyansky ◽  
L. Moriconi ◽  
A. Tsinober

2020 ◽  
Author(s):  
Théo Brivoal ◽  
Guillaume Samson ◽  
Hervé Giordani ◽  
Romain Bourdallé-Badie ◽  
Florian Lemarié ◽  
...  

Abstract. A one-dimensional Atmospheric Boundary Layer (ABL1D) is coupled with the NEMO ocean model and implemented over the Iberian–Biscay–Ireland (IBI) area at 1/36° resolution to investigate the retroactions between the surface currents and the atmosphere, namely the Current FeedBack (CFB) in this region of low mesoscale activity. The ABL1D-NEMO coupled model is forced by a large-scale atmospheric reanalysis (ERA-Interim) and integrated over the period 2016–2017. The mechanisms of eddy kinetic energy damping and ocean upper-layers re-energization are realistically simulated, meaning that the CFB is properly represented by the model. In particular, the dynamical coupling coefficients between the curls of surface stress/wind and current are in agreement with the literature. The effects of CFB on the kinetic energy (KE) are then investigated through a KE budget. We show that the KE decrease induced by the CFB is significant down to 1500 m. Near the surface (0–300 m), most of the KE decrease can be explained by a reduction of the surface wind work by 4 %. At depth (300–2000 m), the CFB induce a reduction of the pressure work (i.e: the PE to KE conversion) associated with a reduction of KE which is significant down to 1500 m. We show that this reduction of KE at depth can be explained by CFB-induced Ekman pumping above eddies that weakens the mesoscale activity and this over the whole water column.


2012 ◽  
Vol 12 (4) ◽  
pp. 9331-9375 ◽  
Author(s):  
R. H. H. Janssen ◽  
J. Vilà-Guerau de Arellano ◽  
L. N. Ganzeveld ◽  
P. Kabat ◽  
J. L. Jimenez ◽  
...  

Abstract. We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to well reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment) must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA) concentration. An examination of the budgets of organic aerosol and terpene concentration shows that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically examine the role of the land surface, which governs both the surface energy balance partitioning and terpene-emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene-emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore it influences the relationship between organic aerosol and terpene-concentrations. Our findings indicate that the diurnal evolution of SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.


Sign in / Sign up

Export Citation Format

Share Document