Comparative Analysis of Behavioral Reactions and Morphological Changes in the Rat Brain After Exposure to Ionizing Radiation with Different Physical Characteristics

Author(s):  
Yu. S. Severyukhin ◽  
M. Lalkovičová ◽  
D. M. Utina ◽  
K. N. Lyakhova ◽  
I. A. Kolesnikova ◽  
...  
1983 ◽  
Vol 3 (8) ◽  
pp. 1333-1342
Author(s):  
J F Bond ◽  
S R Farmer

The expression of alpha-tubulin, beta-tubulin, and actin mRNA during rat brain development has been examined by using specific cDNA clones and in vitro translation techniques. During brain maturation (0 to 80 days postnatal), these mRNA species undergo a significant decrease in abundance. The kinetics of this decrease varies between the cerebrum and the cerebellum. These mRNAs are most abundant in both tissues during week 1 postnatal, each representing 10 to 15% of total mRNA activity. Both alpha- and beta-tubulin mRNA content decreases by 90 to 95% in the cerebrum after day 11 postnatal, and 70 to 80% decreases in the cerebellum after day 16. Actin sequences also decrease but to a lesser extent in both tissues (i.e., 50%). These decreases coincide with the major developmental morphological changes (i.e., neurite extension) occurring during this postnatal period. These studies have also identified the appearance of a new 2.5-kilobase beta-tubulin mRNA species, which is more predominant in the cerebellar cytoplasm. The appearance of this form occurs at a time when the major 1.8-kilobase beta-tubulin mRNA levels are declining. The possibility that the tubulin multigene family is phenotypically expressed and then this expression responds to the morphological state of the nerve cells is discussed.


2019 ◽  
Vol 60 (6) ◽  
pp. 740-746 ◽  
Author(s):  
Jing Wu ◽  
Yuqing Duan ◽  
Jie Cui ◽  
Yinping Dong ◽  
Hongyan Li ◽  
...  

Abstract Intestinal injury is the primary toxicity of radiotherapy for pelvic and abdominal tumors, and it is also one of the common acute complications of radiotherapy. At present, there are no effective drugs to prevent intestinal injury in the clinic. Zingerone is a natural product with radioprotective effects. In this study, a novel compound (thiazolidine hydrochloride, TZC01) was synthesized by structural modification of zingerone. The effects of TZC01 on preventing intestinal injury from radiation were further investigated in this study. C57BL/6N mice were exposed to a lethal dose of abdominal irradiation (ABI) with and without TZC01 treatments. The morphological changes of the intestine and various makers of intestinal crypt cells were investigated. Treatment with TZC01 improved the survival rate of mice exposed to 12 Gy ABI. Moreover, TZC01 protected the intestinal morphology of mice, decreased the apoptotic rate of intestinal crypt cells, maintained cell regeneration and promoted crypt cell proliferation and differentiation. This study suggests that TZC01 has preventive and therapeutic effects on radiation enteritis by promoting the proliferation and differentiation of crypt cells to protect the small intestine from the toxic effects of ionizing radiation. Furthermore, the study of TCZ01 lays a strong foundation for developing novel radioprotectors with multiple properties.


2020 ◽  
Vol 10 ◽  
pp. 184798042092275
Author(s):  
Luciana A. Castillo ◽  
Silvia E. Barbosa

A comparative analysis of crystallization behavior induced by several mineral fillers in polypropylene nanocomposites was performed. Morphological changes and thermal properties of nanocomposites were evaluated, considering the influence of shape, crystalline morphology, and concentration of mineral particles. For this study, hydrated magnesium silicates with different particle morphologies, such as platelets (talc) and fibers (sepiolite), were used for nanocomposites. In addition, to analyze the effect of mineral crystallinity on nanocomposites, talc and sepiolite from different origin and genesis were selected. Nanocomposites were compounded and injection molded, using different filler concentration (0, 1, and 3% w/w) for each mineral particle. To evaluate the particle influence on nanocomposite crystallinity, X-ray diffraction was used to determine crystalline phases and crystal orientation, meanwhile differential scanning calorimetry was performed to obtain thermal properties. Main results revealed that talc has a higher nucleating effect on polypropylene matrix than sepiolite fibers, regardless of their origin and genesis. Meanwhile, a transcrystalline layer that surrounds the fiber surface is observed for nanocomposite containing sepiolite. Moreover, Argentinean talc induces different crystalline phases in nanocomposite with respect to Australian one, which partly influences on mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document