scholarly journals Indicators of climate change in agricultural systems

2018 ◽  
Vol 163 (4) ◽  
pp. 1719-1732 ◽  
Author(s):  
Jerry L. Hatfield ◽  
John Antle ◽  
Karen A. Garrett ◽  
Roberto Cesar Izaurralde ◽  
Terry Mader ◽  
...  

AbstractClimate change affects all segments of the agricultural enterprise, and there is mounting evidence that the continuing warming trend with shifting seasonality and intensity in precipitation will increase the vulnerability of agricultural systems. Agricultural is a complex system within the USA encompassing a large number of crops and livestock systems, and development of indicators to provide a signal of the impact of climate change on these different systems would be beneficial to the development of strategies for effective adaptation practices. A series of indicators were assembled to determine their potential for assessing agricultural response to climate change in the near term and long term and those with immediate capability of being implemented and those requiring more development. The available literature reveals indicators on livestock related to heat stress, soil erosion related to changes in precipitation, soil carbon changes in response to increasing carbon dioxide and soil management practices, economic response to climate change in agricultural production, and crop progress and productivity. Crop progress and productivity changes are readily observed data with a historical record for some crops extending back to the mid-1800s. This length of historical record coupled with the county-level observations from each state where a crop is grown and emerging pest populations provides a detailed set of observations to assess the impact of a changing climate on agriculture. Continued refinement of tools to assess climate impacts on agriculture will provide guidance on strategies to adapt to climate change.

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252067
Author(s):  
Oladipo S. Obembe ◽  
Nathan P. Hendricks ◽  
Jesse Tack

An increase in global average surface temperature over the 21st century will affect food production. There is still uncertainty if the source of the production losses caused by climate change could be driven either by lower yield or reduced area harvested. We use county-level production data on winter wheat coupled with fine-scale weather outcomes between 1981-2007 to examine the impact of climate change on winter wheat production in Kansas. We decompose the total impact of weather variables through both the yield and harvested acreage channels. We find that an insignificant portion—both in terms of magnitude and statistical significance—of the production losses are due to reduced harvested acres (i.e., crop abandonment). The proportion harvested only account for 14.88% and 21.71% of the total damages under RCPs 4.5 and 8.5 and neither effect is statistically significant. An implication of this result implies that studies that only examine climate impacts on harvested yields are not significantly underestimating the climate change impacts on production.


2018 ◽  
Vol 10 (7) ◽  
pp. 2522 ◽  
Author(s):  
Ivan Viveros Santos ◽  
Cécile Bulle ◽  
Annie Levasseur ◽  
Louise Deschênes

Life cycle assessment has been recognized as an important decision-making tool to improve the environmental performance of agricultural systems. Still, there are certain modelling issues related to the assessment of their impacts. The first is linked to the assessment of the metal terrestrial ecotoxicity impact, for which metal speciation in soil is disregarded. In fact, emissions of metals in agricultural systems contribute significantly to the ecotoxic impact, as do copper-based fungicides applied in viticulture to combat downy mildew. Another issue is linked to the ways in which the intrinsic geographical variability of agriculture resulting from the variation of management practices, soil properties, and climate is addressed. The aim of this study is to assess the spatial variability of the terrestrial ecotoxicity impact of copper-based fungicides applied in European vineyards, accounting for both geographical variability in terms of agricultural practice and copper speciation in soil. This first entails the development of regionalized characterization factors (CFs) for the copper used in viticulture and then the application of these CFs to a regionalized life-cycle inventory that considers different management practices, soil properties, and climates in different regions, namely Languedoc-Roussillon (France), Minho (Portugal), Tuscany (Italy), and Galicia (Spain). There are two modelling alternatives to determine metal speciation in terrestrial ecotoxicity: (a) empirical regression models; and (b) WHAM 6.0, the geochemical speciation model applied according to the soil properties of the Harmonized World Soil Database (HWSD). Both approaches were used to compute and compare regionalized CFs with each other and with current IMPACT 2002+ CF. The CFs were then aggregated at different spatial resolutions—global, Europe, country, and wine-growing region—to assess the uncertainty related to spatial variability at the different scales and applied in the regionalized case study. The global CF computed for copper terrestrial ecotoxicity is around 3.5 orders of magnitude lower than the one from IMPACT 2002+, demonstrating the impact of including metal speciation. For both methods, an increase in the spatial resolution of the CFs translated into a decrease in the spatial variability of the CFs. With the exception of the aggregated CF for Portugal (Minho) at the country level, all the aggregated CFs derived from empirical regression models are greater than the ones derived from the method based on WHAM 6.0 within a range of 0.2 to 1.2 orders of magnitude. Furthermore, CFs calculated with empirical regression models exhibited a greater spatial variability with respect to the CFs derived from WHAM 6.0. The ranking of the impact scores of the analyzed scenarios was mainly determined by the amount of copper applied in each wine-growing region. However, finer spatial resolutions led to an impact score with lower uncertainty.


2018 ◽  
Vol 9 (1) ◽  
pp. 99
Author(s):  
José Daniel Cáceres Pinto

Resumen: Organismos internacionales coinciden que el cambio climático representa una amenaza para el ser humano, particularmente para su salud. Entidades como la Organización Mundial de la Salud (OMS) y voces de la comunidad científica han venido advirtiendo sobre los efectos que las distor­siones climáticas están teniendo sobre la propagación de enfermedades cuyos vectores dependen de su entorno. Sectores vitales para el desarrollo social como la distribución del agua, la agricultu­ra, y la sanidad pública se están viendo cada vez más amenazados por la vorágine climatológica. Sin embargo, persiste una indiferencia silenciosa en diferentes segmentos sociales que consideran el Cambio Climático como un problema abstracto o simplemente algo muy sobre sus capacidades de resolución. Desactivar este desafecto, concienciar a la población general y movilizar a la toma de acción han sido unos de los retos que diversos actores sociales han asumido. Uno de los casos de éxito que más llama la atención ha sido el uso de encuadres de salud. El siguiente artículo di­secciona el impacto que el Cambio Climático tiene y presenta el caso sobre el uso de la promoción de la salud en EEUU para concienciar sobre la problemática ambiental.Palabras clave: Salud; Cambio Climático; encuadres; mensaje.Abstract: International organizations agree that climate change poses a threat to the human being, parti­cularly to his health. Entities such as the World Health Organization (WHO) and voices from the scientific community have been warning about the effects the climatic distortions are having on the propagation of illnesses which vectors depend on their surroundings. Vital sectors for social development such as water distribution, agriculture, and public health are progressively seeing themselves more threatened by the climatic maelstrom. Nevertheless, an indifferent silence per­sists in different social segments who consider Climate change as an abstract problem or simply something out of their reach to resolve. Deactivating this disaffection, raising awareness in the ge­neral population and mobilize to take action have been some of the challenges social actors have undertaken. One particular success story that grabs the attention is the use of health frames. The following article dissects the impact that Climate Change has and presents the case of the use of health promotion in the USA to raise awareness about the environmental problem.Keywords: Health; Climate Change; Frames; Message.


2013 ◽  
Vol 5 (2) ◽  
pp. 216-232
Author(s):  
Sibylle Kabisch ◽  
Ronjon Chakrabarti ◽  
Till Wolf ◽  
Wilhelm Kiewitt ◽  
Ty Gorman ◽  
...  

With regional variations, climate change has a significant impact on water quality deterioration and scarcity, which are serious challenges in developing countries and emerging economies. Often, effective projects to improve water management in the light of climate change are difficult to develop because of the complex interrelations between direct and indirect climate impacts and local perceptions of vulnerabilities and needs. Adaptation projects can be developed through a combination of participatory, bottom-up needs assessments and top-down analyses. Climate change impact chains can help to display the causal chain of climate signals and resulting impacts and thereby establish a system map as a basis for stakeholder discussions. This article aims to develop specific climate change impact chains for the water management sector in rural coastal India that combine bottom-up and top-down perspectives. Case studies from Tamil Nadu and Andhra Pradesh, India, provide a basis for the impact chains developed. Bottom-up data were gathered through a vulnerability and needs assessment in 18 villages complemented with top-down research data. The article is divided into four steps: (1) system of interest; (2) data on climate change signals; (3) climate change impacts based on top-down as well as bottom-up information; (4) specific impact chains complemented by initial climate change adaptation options.


2016 ◽  
Vol 154 (7) ◽  
pp. 1153-1170 ◽  
Author(s):  
E. EBRAHIMI ◽  
A. M. MANSCHADI ◽  
R. W. NEUGSCHWANDTNER ◽  
J EITZINGER ◽  
S. THALER ◽  
...  

SUMMARYClimate change is expected to affect optimum agricultural management practices for autumn-sown wheat, especially those related to sowing date and nitrogen (N) fertilization. To assess the direction and quantity of these changes for an important production region in eastern Austria, the agricultural production systems simulator was parameterized, evaluated and subsequently used to predict yield production and grain protein content under current and future conditions. Besides a baseline climate (BL, 1981–2010), climate change scenarios for the period 2035–65 were derived from three Global Circulation Models (GCMs), namely CGMR, IPCM4 and MPEH5, with two emission scenarios, A1B and B1. Crop management scenarios included a combination of three sowing dates (20 September, 20 October, 20 November) with four N fertilizer application rates (60, 120, 160, 200 kg/ha). Each management scenario was run for 100 years of stochastically generated daily weather data. The model satisfactorily simulated productivity as well as water and N use of autumn- and spring-sown wheat crops grown under different N supply levels in the 2010/11 and 2011/12 experimental seasons. Simulated wheat yields under climate change scenarios varied substantially among the three GCMs. While wheat yields for the CGMR model increased slightly above the BL scenario, under IPCM4 projections they were reduced by 29 and 32% with low or high emissions, respectively. Wheat protein appears to increase with highest increments in the climate scenarios causing the largest reductions in grain yield (IPCM4 and MPEH-A1B). Under future climatic conditions, maximum wheat yields were predicted for early sowing (September 20) with 160 kg N/ha applied at earlier dates than the current practice.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Andrijevic ◽  
Jesus Crespo Cuaresma ◽  
Tabea Lissner ◽  
Adelle Thomas ◽  
Carl-Friedrich Schleussner

AbstractGender inequalities are reflected in differential vulnerability, and exposure to the hazards posed by climate change and addressing them is key to increase the adaptive capacities of societies. We provide trajectories of the Gender Inequality Index (GII) alongside the Shared-Socioeconomic Pathways (SSPs), a scenario framework widely used in climate science. Here we find that rapid improvements in gender inequality are possible under a sustainable development scenario already in the near-term. The share of girls growing up in countries with the highest gender inequality could be reduced to about 24% in 2030 compared to about 70% today. Largely overcoming gender inequality as assessed in the GII would be within reach by mid-century. Under less optimistic scenarios, gender inequality may persist throughout the 21st century. Our results highlight the importance of incorporating gender in scenarios assessing future climate impacts and underscore the relevance of addressing gender inequalities in policies aiming to foster climate resilient development.


2013 ◽  
Vol 21 (4) ◽  
pp. 322-365 ◽  
Author(s):  
David T. Price ◽  
R.I. Alfaro ◽  
K.J. Brown ◽  
M.D. Flannigan ◽  
R.A. Fleming ◽  
...  

Canadian boreal woodlands and forests cover approximately 3.09 × 106 km2, located within a larger boreal zone characterized by cool summers and long cold winters. Warming since the 1850s, increases in annual mean temperature of at least 2 °C between 2000 and 2050 are highly probable. Annual mean temperatures across the Canadian boreal zone could be 4–5 °C warmer than today’s by 2100. All aspects of boreal forest ecosystem function are likely to be affected. Further, several potential “tipping elements” — where exposure to increasing changes in climate may trigger distinct shifts in ecosystem state — can be identified across the Canadian boreal zone. Approximately 40% of the forested area is underlain by permafrost, some of which is already degrading irreversibly, triggering a process of forest decline and re-establishment lasting several decades, while also releasing significant quantities of greenhouse gases that will amplify the future global warming trend. Warmer temperatures coupled with significant changes in the distribution and timing of annual precipitation are likely to cause serious tree-killing droughts in the west; east of the Great Lakes, however, where precipitation is generally nonlimiting, warming coupled with increasing atmospheric carbon dioxide may stimulate higher forest productivity. Large wildfires, which can cause serious economic losses, are expected to become more frequent, but increases in mean annual area burned will be relatively gradual. The most immediate threats could come from endemic forest insect pests that have the potential for population outbreaks in response to relatively small temperature increases. Quantifying the multiple effects of climate change will be challenging, particularly because there are great uncertainties attached to possible interactions among them, as well as with other land-use pressures. Considerable ingenuity will be needed from forest managers and scientists to address the formidable challenges posed by climate change to boreal ecosystems and develop effective strategies to adapt sustainable forest management practices to the impending changes.


2021 ◽  
Author(s):  
Philip Kuriachen ◽  
Asha Devi ◽  
Anu Susan Sam ◽  
Suresh Kumar ◽  
Jyoti Kumari ◽  
...  

Abstract Climate change and consequent variations in temperature pose a significant challenge for sustaining wheat production systems globally. In this study, the potential impact of rising temperature on wheat yield in the north Indian plains, India's major wheat growing region, was analyzed using panel data from the year 1981 to 2009. This study deviates from the majority of the previous studies by including non-climatic factors in estimating the impact of climate change. Two temperature measures were used for fitting the function, viz., Growing Season Temperature (GST) and Terminal Stage Temperature (TST), to find out the differential impact of increased temperature at various growth stages. Analysis revealed that there was a significant rise in both GST as well as TST during the study period. The magnitude of the annual increment in TST was twice that of GST. Wheat yield growth in the region was driven primarily by increased input resources such as fertilizer application and technological development like improved varieties and management practices. Most importantly, the study found that the extent of yield reduction was more significant for an increase in temperature at terminal crop growth stages. The yield reduction due to unit increase in TST was estimated to be 2.26 % while rise in GST by 1◦C resulted in yield reduction of 2.03%.


Author(s):  
Ayushi Trivedi ◽  
S. K. Pyasi ◽  
R. V. Galkate

The integrated approach for assessment of the impact of climate change is important, as climate impacts are likely to transcend sectoral or regional boundaries, with impacts of change in hydrological and geological behaviour of one sector affecting the behaviour of another or simultaneously any other sector, or region, to respond. Modelling is often used by hydrologists in the analysis of empirical data to gain insights into the underlying dynamics of simulated runoff and its trend changing pattern. Thus, these models extrapolate from a climate-related (usually temperature-related) relationship derived by observations and experiment. The climate changes have adverse and drastic impacts on climate-sensitive sectors such as water resources, agriculture and ultimately livelihood and economy of the people. Thus consequently increase or decrease in temperature, rainfall and other climatic parameters due to climate change affect the river discharge, flood, reservoir storages, groundwater levels, soil moisture, evapotranspiration, crop production, sea levels etc. Keeping this insight patches of major changes from the whole study area were selected to assess the intensity of rainfall, discharge and the incremental impact of rainfall. The temporal analysis in selected patches revealed that increment and decrement in the study area simultaneously affect the runoff by the same proportion. The trend generated through the Mann-Kendall test not only helped in assessing the impact of climate change but also identified its causative actors. The results of the study can effectively be utilized for setting priorities of hydrological behaviour in different geographical regions at various scales.


Sign in / Sign up

Export Citation Format

Share Document