scholarly journals Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+

2020 ◽  
Vol 163 (3) ◽  
pp. 1307-1327 ◽  
Author(s):  
Celray James Chawanda ◽  
Jeffrey Arnold ◽  
Wim Thiery ◽  
Ann van Griensven

AbstractClimate change (CC) has a high impact on hydrological processes which calls for reliable projections of CC hydrological impacts at large scales. However, there are several challenges in hydrological modelling at large scales. Large-scale models are often not adapted and evaluated at regional scale due to high computation time requirements or lack of information on human interactions, such as dam operations and irrigation practices at local scale. In this study, we present a regionalised methodology that uses a hydrological mass balance calibration (HMBC) and global datasets to represent reservoir and irrigation practices and apply these to a SWAT+ model for Southern Africa. We evaluate the influence of HMBC and the representation on irrigation and reservoirs on model performance and climate projections. We propose a generalised implementation of reservoirs using global datasets and decision tables to represent irrigation and reservoir management. Results show that inclusion of irrigation, reservoirs and HMBC leads to improved simulation of discharge and evapotranspiration with fewer iterations than a full parameter calibration. There is a substantial difference between projections made by the regionalised model and default model when looking at local impacts. We conclude that large-scale hydrological studies that involve local analysis and spatial mapping of results benefit from HMBC and representation of management practices. The proposed methodology can be scaled up and improve overall projections made by global models.

2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


2021 ◽  
Author(s):  
Albert Nkwasa ◽  
Celray James Chawanda ◽  
Ann van Griensven ◽  
Jonas Jägermeyr

<p>Even though cropland cultivation covers over 40% of the planet’s ice free land surface, most regional and global hydrological models either ignore the representation of cropland or consider crop cultivation in a simplistic way or in abstract terms without any management practices. Yet, the water balance of cultivated areas is strongly influenced by applied management practices (e.g. planting, irrigation, fertilization, harvesting). For instance, the SWAT+ model represents agricultural land by default in a generic way where the timing of the cropping season is driven by accumulated heat units. However, this approach does not work for tropical and sub-tropical regions such as the sub-Saharan Africa where crop growth dynamics are mainly controlled by rainfall rather than temperature.</p><p>In this study, we present an approach on how to reasonably incorporate crop phenology using decision tables and global datasets of rainfed and irrigated croplands with the associated cropping calendar and fertilizer applications in a SWAT+ model for North Eastern Africa. We evaluate the influence of the crop phenology representation on simulations of Leaf Area Index (LAI) and Evapotranspiration (ET) using LAI remote sensing data derived from Proba-V satellite and WaPOR ET data respectively. Results show that a representation of crop phenology using global datasets leads to improved temporal patterns of LAI and ET simulations especially for regions with a single cropping cycle.  However, for regions with multiple cropping seasons, global phenology datasets need to be complemented with local data or remote sensing data to capture additional cropping seasons. We conclude that regional and global hydrological models can benefit from improved representations of crop phenology and the associated management practices. Future work regarding the incorporation of multiple cropping seasons in global phenology data is needed to better represent cropping cycles in global hydrological models.</p>


2021 ◽  
Vol 13 (10) ◽  
pp. 1949
Author(s):  
Saeideh Gharehchahi ◽  
Thomas J. Ballinger ◽  
Jennifer L. R. Jensen ◽  
Anshuman Bhardwaj ◽  
Lydia Sam ◽  
...  

Glacier mass variations are climate indicators. Therefore, it is essential to examine both winter and summer mass balance variability over a long period of time to address climate-related ice mass fluctuations. In this study we analyze glacier mass balance components and hypsometric characteristics with respect to their interactions with local meteorological variables and remote large-scale atmospheric and oceanic patterns. The results show that all selected glaciers have lost their equilibrium condition in recent decades, with persistent negative annual mass balance trends and decreasing accumulation area ratios (AARs), accompanied by increasing air temperatures of ≥+0.45 °C decade−1. The controlling factor of annual mass balance is mainly attributed to summer mass losses, which are correlated with (warming) June to September air temperatures. In addition, the interannual variability of summer and winter mass balances is primarily associated to the Atlantic Multidecadal Oscillation (AMO), Greenland Blocking Index (GBI), and East Atlantic (EA) teleconnections. Although climate parameters are playing a significant role in determining the glacier mass balance in the region, the observed correlations and mass balance trends are in agreement with the hypsometric distribution and morphology of the glaciers. The analysis of decadal frontal retreat using Landsat images from 1984 to 2014 also supports the findings of this research, highlighting the impact of lake formation at terminus areas on rapid glacier retreat and mass loss in the Swiss Alps.


2021 ◽  
Author(s):  
Shannon de Roos ◽  
Gabrielle De Lannoy ◽  
Dirk Raes

<p>A shift to more sustainable land cultivation practices is necessary to meet the future crop demand, which faces a vastly growing population and changing climatic conditions. To assess which management practices can be effectively applied at a regional scale, good spatial monitoring techniques are required. With a regional version of the AquaCrop model v6.1, we simulate crop biomass production and soil moisture at a 1-km resolution over Europe. Biomass productivity is compared against the Dry Matter Productivity of the Copernicus Global Land Service, derived from optical satellite sensors, while surface moisture content is evaluated with Sentinel-1 and SMAP microwave satellite retrieval products and inter-compared with in situ data. We show that the AquaCrop model can successfully be applied at a relatively fine resolution over a large scale, using global input data.</p><p>This research is part of a H2020 project, named SHui. SHui is a collaborative effort between Universities from Europe and China, with the overall aim of managing water scarcity in cropping systems for individuals as well as stakeholder organizations.</p>


2006 ◽  
Vol 19 (21) ◽  
pp. 5554-5569 ◽  
Author(s):  
P. Good ◽  
J. Lowe

Abstract Aspects of model emergent behavior and uncertainty in regional- and small-scale effects of increasing CO2 on seasonal (June–August) precipitation are explored. Nineteen different climate models are studied. New methods of comparing multiple climate models reveal a clearer and more impact-relevant view of precipitation projections for the current century. First, the importance of small spatial scales in multimodel projections is demonstrated. Local trends can be much larger than or even have an opposing sign to the large-scale regional averages used in previous studies. Small-scale effects of increasing CO2 and natural internal variability both play important roles here. These small-scale features make multimodel comparisons difficult for precipitation. New methods that allow information from small spatial scales to be usefully compared across an ensemble of multiple models are presented. The analysis philosophy of this study works with statistical distributions of small-scale variations within climatological regions. A major result of this work is a set of emergent relationships coupling the small- and regional-scale effects of CO2 on precipitation trends. Within each region, a single relationship fits the ensemble of 19 different climate models. Using these relationships, a surprisingly large part of the intermodel variance in small-scale effects of CO2 is explainable simply by the intermodel variance in the regional mean (a form of pattern scaling). Different regions show distinctly different relationships. These relationships imply that regional mean results are still useful, as long as the interregional variation in their relationship with impact-relevant extreme trends is recognized. These relationships are used to present a clear but rich picture of an aspect of model uncertainty, characterized by the intermodel spread in seasonal precipitation trends, including information from small spatial scales.


Author(s):  
Meseret Addissie ◽  
Gashaw Molla

Soil erosion is the driver of food insecurity and environmental degradation affecting the lives of smallholder farmers. To tackle soil and water degradation government-led large-scale soil and water management programs have been introduced at a watershed scale. The long-term viability of those practices in the Gumara watershed remains a major challenge. The objective of the study was to better understand the general approaches used to implement and design watershed management practices so that soil and nutrient transport to downstream water bodies could be managed. Sub watersheds from the large Gumara watershed were identified for detailed study based on erosion hotspots using the SWAT model. These sub-watersheds represent communities organized for conservation works in the absence of food assistance programs. The data were collected from four focus groups of fifty participants each, field observation, and desk-level meetings with experts. A structured questionnaire was used to get relevant information to the participating farmers. According to the findings, each of the selected watersheds used similar approaches to implement conservation activities. The community withdrew from conservation efforts, even on their farm fields, since the success rate was below the expectation. At this spot realizing the long-term benefits of watershed development activities stayed challenging. The smallholder farmer, on the other hand, clearly relies on rain-fed agriculture and hopes to see immediate results to feed his family. In conclusion, government-led development programs have not been evaluated, technically supported, lack trusted in the community and hence development efforts were put in jeopardy.


2021 ◽  
Author(s):  
Albert Nkwasa ◽  
Celray James Chawanda ◽  
Jonas Jägermeyr ◽  
Ann van Griensven

Abstract. To date, most regional and global hydrological models either ignore the representation of cropland or consider crop cultivation in a simplistic way or in abstract terms without any management practices. Yet, the water balance of cultivated areas is strongly influenced by applied management practices (e.g. planting, irrigation, fertilization, harvesting). The SWAT+ model represents agricultural land by default in a generic way where the start of the cropping season is driven by accumulated heat units. However, this approach does not work for tropical and sub-tropical regions such as the sub-Saharan Africa where crop growth dynamics are mainly controlled by rainfall rather than temperature. In this study, we present an approach on how to incorporate crop phenology using decision tables and global datasets of rainfed and irrigated croplands with the associated cropping calendar and fertilizer applications in a regional SWAT+ model for Northeast Africa. We evaluate the influence of the crop phenology representation on simulations of Leaf Area Index (LAI) and Evapotranspiration (ET) using LAI remote sensing data from Copernicus Global Land Service (CGLS) and WaPOR ET data respectively. Results show that a representation of crop phenology using global datasets leads to improved temporal patterns of LAI and ET simulations especially for regions with a single cropping cycle. However, for regions with multiple cropping seasons, global phenology datasets need to be complemented with local data or remote sensing data to capture additional cropping seasons. In addition, the improvement of the cropping season also helps to improve soil erosion estimates, as the timing of crop cover controls erosion rates in the model. With more realistic growing seasons, soil erosion is largely reduced for most agricultural Hydrologic Response Units (HRUs) which can be considered as a move towards substantial improvements over previous estimates. We conclude that regional and global hydrological models can benefit from improved representations of crop phenology and the associated management practices. Future work regarding the incorporation of multiple cropping seasons in global phenology data is needed to better represent cropping cycles in regional to global hydrological models.


SIMULATION ◽  
2011 ◽  
Vol 88 (3) ◽  
pp. 365-380 ◽  
Author(s):  
Margaret W Gitau ◽  
Li-Chi Chiang ◽  
Mohamed Sayeed ◽  
Indrajeet Chaubey

Models are increasingly being used to quantify the effects of best management practices (BMPs) on water quality. While these models offer the ability to study multiple BMP scenarios, and to analyze impacts of various management decisions on watershed response, associated analyses can be very computationally intensive due to a large number of runs needed to fully capture the various uncertainties in the model outputs. There is, thus, the need to develop suitable and efficient techniques to handle such comprehensive model evaluations. We demonstrate a novel approach to accomplish a large number of model runs with Condor, a distributed high-throughput computing framework for model runs with the Soil and Water Assessment Tool (SWAT) model. This application required more than 43,000 runs of the SWAT model to evaluate the impacts of 172 different watershed management decisions combined with weather uncertainty on water quality. The SWAT model was run in the Condor environment implemented on the TeraGrid. This framework significantly reduced the model run time from 2.5 years to 18 days and enabled us to perform comprehensive BMP analyses that may not have been possible with traditional model runs on a few desktop computers. The Condor system can be used effectively to make Monte Carlo analyses of complex watershed models requiring a large number of computational cycles.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 495d-495
Author(s):  
J. Farias-Larios ◽  
A. Michel-Rosales

In Western Mexico, melon production depends on high-input systems to maximize yield and product quality. Tillage, plasticulture, fumigation with methyl bromide, and fertigation, are the principal management practices in these systems. However, at present several problems has been found: pests as sweetpotato whitefly (Bemisia tabaci Gennadius), aphids (Myzus and Aphis), leafminer (Liryomiza sativae); diseases as Fusarium, Verticilium, and Pseudoperenospora, and weeds demand high pesticide utilization and labor. There is a growing demand for alternative cultural practices, with an emphasis on reducing off-farm input labor and chemicals. Our research is based on use of organic mulches, such as: rice straw, mature maize leaves, banana leaves, sugarcane bagasse, coconut leaves, and living mulches with annual legume cover crop in melons with crop rotation, such as: Canavalia, Stilozobium, Crotalaria, and Clitoria species. Also, inoculations with mycorrhizal arbuscular fungi for honeydew and cantaloupe melon seedlings production are been assayed in greenhouse conditions for a transplant system. The use of life barriers with sorghum, marigold, and other aromatic native plants in conjunction with a colored yellow systems traps for monitoring pests is being studied as well. While that the pest control is based in commercial formulations of Beauveria bassiana for biological control. The first results of this research show that the Glomus intraradices, G. fasciculatum, G. etunicatum, and G. mosseae reached 38.5%, 33.5%, 27.0%, and 31.0% of root infection levels, respectively. Honeydew melons production with rice and corn straw mulches shows an beneficial effect with 113.30 and 111.20 kg/plot of 10 m2 compared with bare soil with 100.20 kg. The proposed system likely also lowers production cost and is applicable to small- and large-scale melon production.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498c-498
Author(s):  
A. Fares ◽  
A.K. Alva ◽  
S. Paramasivam

Water and nitrogen (N) are important inputs for most crop production. The main objectives of nitrogen best management practices (NBMP) are to improve N and water management to maximize the uptake efficiency and minimize the leaching losses. This require a complete understanding of fate of N and water mass balance within and below the root zone of the crop in question. The fate of nitrogen applied for citrus production in sandy soils (>95% sand) was simulated using a mathematical model LEACHM (Leaching Estimation And Chemistry Model). Nitrogen removal in harvested fruits and storage in the tree accounted the major portion of the applied N. Nitrogen volatilization mainly as ammonia and N leaching below the root zone were the next two major components of the N mass balance. A proper irrigation scheduling based on continuous monitoring of the soil water content in the rooting was used as a part of the NBMP. More than 50% of the total annual leached water below the root zone was predicted to occur in the the rainy season. Since this would contribute to nitrate leaching, it is recomended to avoid N application during the rainy season.


Sign in / Sign up

Export Citation Format

Share Document