scholarly journals How the rain-gauge threshold affects the precipitation frequency and amount

2022 ◽  
Vol 170 (1-2) ◽  
Author(s):  
Dario Camuffo ◽  
Francesca Becherini ◽  
Antonio della Valle
2011 ◽  
Vol 8 (6) ◽  
pp. 10739-10780
Author(s):  
V. Ruiz-Villanueva ◽  
M. Borga ◽  
D. Zoccatelli ◽  
L. Marchi ◽  
E. Gaume ◽  
...  

Abstract. The 2 June 2008 flood-producing storm on the Starzel river basin in South-West Germany is examined as a prototype for organized convective systems that dominate the upper tail of the precipitation frequency distribution and are likely responsible for the flash flood peaks in this region. The availability of high-resolution rainfall estimates from radar observations and a rain gauge network, together with indirect peak discharge estimates from a detailed post-event survey, provides the opportunity to study the hydrometeorological and hydrological mechanisms associated with this extreme storm and the ensuing flood. Radar-derived rainfall, streamgauge data and indirect estimates of peak discharges are used along with a distributed hydrologic model to reconstruct hydrographs at multiple locations. The influence of storm structure, evolution and motion on the modeled flood hydrograph is examined by using the "spatial moments of catchment rainfall" (Zoccatelli et al., 2011). It is shown that downbasin storm motion had a noticeable impact on flood peak magnitude. Small runoff ratios (less than 20%) characterized the runoff response. The flood response can be reasonably well reproduced with the distributed hydrological model, using high resolution rainfall observations and model parameters calibrated at a river section which includes most of the area impacted by the storm.


2022 ◽  
Vol 8 (1) ◽  
pp. 163-170
Author(s):  
Ravidho Ramadhan ◽  
Marzuki Marzuki ◽  
Helmi Yusnaini ◽  
Ayu Putri Ningsih ◽  
Hiroyuki Hashiguchi ◽  
...  

Accurate satellite precipitation estimates over areas of complex topography are still challenging, while such accuracy is of importance to the adoption of satellite data for hydrological applications. This study evaluated the ability of Integrated Multi-satellitE Retrievals for GPM -Final (IMERG) V06 product to observe the extreme rainfall over a mountainous area of Sumatra Island. Fifteen years of optical rain gauge (ORG) observation at Kototabang, West Sumatra, Indonesia (100.32°E, 0.20°S, 865 m above sea level), were used as reference surface measurement. The performance of IMERG-F was evaluated using 13 extreme rain indexes formulated by the Expert Team on Climate Change Detection and Indices (ETCCDI). The IMERG-F overestimated the values of all precipitation amount-based indices (PRCPTOT, R85P, R95P, and R99P), three precipitation frequency-based indices (R1mm, R10mm, R20mm), one precipitation duration-based indices (CWD), and one precipitation intensity-based indices (RX5day). Furthermore, the IMERG-F underestimated the values of precipitation frequency-based indices (R50mm), one precipitation duration-based indices (CDD), one precipitation intensity-based indices (SDII). In terms of correlation, only five indexes have a correlation coefficient (R) > 0.5, consistent with Kling–Gupta Efficiency (KGE) value. These results confirm the need to improve the accuracy of the IMERG-F data in mountainous areas.


2019 ◽  
Vol 20 (6) ◽  
pp. 1123-1145 ◽  
Author(s):  
M. Lockhoff ◽  
O. Zolina ◽  
C. Simmer ◽  
J. Schulz

Abstract This paper evaluates several daily precipitation products over western and central Europe, identifies and documents their respective strengths and shortcomings, and relates these to uncertainties associated with each of the products. We analyze one gauge-based, three satellite-based, and two reanalysis-based products using high-density rain gauge observations as reference. First, we assess spatial patterns and frequency distributions using aggregated statistics. Then, we determine the skill of precipitation event detection from these products with a focus on extremes, using temporally and spatially matched pairs of precipitation estimates. The results show that the quality of the datasets largely depends on the region, season, and precipitation characteristic addressed. The satellite and the reanalysis precipitation products are found to have difficulties in accurately representing precipitation frequency with local overestimations of more than 40%, which occur mostly in dry regions (all products) as well as along coastlines and over cold/frozen surfaces (satellite-based products). The frequency distributions of wet-day intensities are generally well reproduced by all products. Concerning the frequency distributions of wet-spell durations, the satellite-based products are found to have clear deficiencies for maritime-influenced precipitation regimes. Moreover, the analysis of the detection of extreme precipitation events reveals that none of the non-station-based datasets shows skill at the shortest temporal and spatial scales (1 day, 0.25°), but at and above the 3-day and 1.25° scale the products start to exhibit skill over large parts of the domain. Added value compared to coarser-resolution global benchmark products is found both for reanalysis and satellite-based products.


2020 ◽  
Vol 590 ◽  
pp. 125564
Author(s):  
Lanxin Hu ◽  
Efthymios I. Nikolopoulos ◽  
Francesco Marra ◽  
Efrat Morin ◽  
Marco Marani ◽  
...  

2021 ◽  
Author(s):  
Francesco Marra ◽  
Moshe Armon ◽  
Efrat Morin

Abstract. The yearly exceedance probability of extreme precipitation of multiple durations is crucial for infrastructure design, risk management and policymaking. Local extremes emerge from the interaction of weather systems with local terrain features such as coastlines and orography, however multi-duration extremes do not follow exactly the patterns of cumulative precipitation and are still not well understood. High-resolution information from weather radars could help us better quantifying their patterns, but traditional extreme-value analyses based on radar records were found too inaccurate for quantifying the extreme intensities for impact studies. Here, we propose a novel methodology for extreme precipitation frequency analysis based on relatively short weather radar records, and we use it to investigate coastal and orographic effects on extreme precipitation of durations between 10 minutes and 24 hours. Combining 11 years of radar data with 10-minute rain gauge data in the southeastern Mediterranean, we obtain estimates of the 1 in 100 years intensities with ~22 % standard error, which is lower than those obtained using traditional approaches on rain gauge data. We identify three distinct regimes, which respond differently to coastal and orographic forcing: short durations (~10 minutes), related to peak convective rain rates; hourly durations (~1 hours), related to the yield of individual convective cells; and long durations (~6–24 hours), related to the accumulation of multiple convective cells and to stratiform processes. At short and hourly durations, extreme return levels peak at the coastline, while at longer durations they peak corresponding to the orographic barriers. The distributions tail heaviness is rather uniform above the sea and rapidly changes in presence of orography, with opposing directions at short (decreasing tail heaviness, with a peak at hourly durations) and long (increasing) durations. These distinct effects suggest that short-scale hazards such as urban pluvial floods could be more of concern for the coastal regions, while longer-scale hazards such as flash floods could be more relevant in mountainous areas.


Author(s):  
Ratna Wilis ◽  
Sugeng Nugroho

One of the consequences of the ongoing climate change is the increasing likelihood of extreme precipitation frequency in the future, which causes the declining trend of total precipitation that affects water debits in the watersheds and brings difficulties to a city like Padang that is situated near the watersheds. In order to elaborate on this, a number of extreme precipitation indices recommended by ETCCDMI was utilized to assess the extreme precipitation condition for the period 1975-2013. These indices were calculated based on the rain-gauge stations along the watersheds in and around Padang. Before processing the data, a series of homogeneity test were undertaken to make sure the data were comparable. The results showed that there was a significant declining trend on the total annual precipitation (PRCPTOT), an increasing trend of the number of days without rain (R0) and a decreasing frequency of the number of days with precipitation of more than 50 mm in the Batang Kuranji Watershed. The results suggested that atmospheric circulations, such as El Nino and positive Dipole Mode, have played their role on the trend as a result of their intensified frequency due to global warming.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1279 ◽  
Author(s):  
Shu Wu ◽  
Momcilo Markus ◽  
David Lorenz ◽  
James Angel ◽  
Kevin Grady

Many studies have projected that as the climate changes, the magnitudes of extreme precipitation events in the Northeastern United States are likely to continue increasing, regardless of the emission scenario. To examine this issue, we analyzed observed and modeled daily precipitation frequency (PF) estimates in the Northeastern US on the rain gauge station scale based on both annual maximum series (AMS) and partial duration series (PDS) methods. We employed four Coupled Model Intercomparison Project Phase 5 (CMIP5) downscaled data sets, including a probabilistic statistically downscaled data set developed specifically for this study. The ability of these four data sets to reproduce the observed features of historical point PF estimates was compared, and the two with the best historical accuracy, including the newly developed probabilistic data set, were selected to produce projected PF estimates under two CMIP5-based emission scenarios, namely Representative Concentration Pathway 4.5 (RCP4.5) and Representative Concentration Pathway 8.5 (RCP8.5). These projections indeed demonstrate a likely increase in PF estimates in the Northeastern US with noted differences in magnitudes and spatial distributions between the two data sets and between the two scenarios. We also quantified how the exceedance probabilities of the historical PF estimate values are likely to increase under each scenario using the two best performing data sets. Notably, an event with a current exceedance probability of 0.01 (a 100-year event) may have an exceedance probability for the second half of the 21st century of ≈0.04 (a 27-year event) under the RCP4.5 scenario and ≈0.05 (a 19-year event) under RCP8.5. Knowledge about the projected changes to the magnitude and frequency of heavy precipitation in this region will be relevant for the socio-economic and environmental evaluation of future infrastructure projects and will allow for better management and planning decisions.


2008 ◽  
Vol 21 (16) ◽  
pp. 3997-4010 ◽  
Author(s):  
Tianjun Zhou ◽  
Rucong Yu ◽  
Haoming Chen ◽  
Aiguo Dai ◽  
Yang Pan

Abstract Hourly or 3-hourly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite products and rain gauge records are used to characterize East Asian summer monsoon rainfall, including spatial patterns in June–August (JJA) mean precipitation amount, frequency, and intensity, as well as the diurnal and semidiurnal cycles. The results show that the satellite products are comparable to rain gauge data in revealing the spatial patterns of JJA precipitation amount, frequency, and intensity, with pattern correlation coefficients for five subregions ranging from 0.66 to 0.94. The pattern correlation of rainfall amount is higher than that of frequency and intensity. Relative to PERSIANN, the TRMM product has a better resemblance with rain gauge observations in terms of both the pattern correlation and root-mean-square error. The satellite products overestimate rainfall frequency but underestimate its intensity. The diurnal (24 h) harmonic dominates subdaily variations of precipitation over most of eastern China. A late-afternoon maximum over southeastern and northeastern China and a near-midnight maximum over the eastern periphery of the Tibetan Plateau are seen in the rain gauge data. The diurnal phases of precipitation frequency and intensity are similar to those of rainfall amount in most regions, except for the middle Yangtze River valley. Both frequency and intensity contribute to the diurnal variation of rainfall amount over most of eastern China. The contribution of frequency to the diurnal cycle of rainfall amount is generally overestimated in both satellite products. Both satellite products capture well the nocturnal peak over the eastern periphery of the Tibetan Plateau and the late-afternoon peak in southern and northeastern China. Rain gauge data over the region between the Yangtze and Yellow Rivers show two peaks, with one in the early morning and the other later in the afternoon. The satellite products only capture the major late-afternoon peak.


2007 ◽  
Vol 8 (5) ◽  
pp. 1049-1067 ◽  
Author(s):  
Marco Borga ◽  
Paolo Boscolo ◽  
Francesco Zanon ◽  
Marco Sangati

Abstract The 29 August 2003 storm on the upper Tagliamento River basin in the eastern Italian Alps is examined as a prototype for organized convective systems that dominate the upper tail of the precipitation frequency distribution and are likely responsible for the majority of flash flood peaks in this area. The availability of high-resolution rainfall estimates from radar observations and rain gauge networks, together with flood response observations derived from stream gauge data and post-event surveys, provides the opportunity to study the hydrometeorological and hydrological mechanisms associated with this extreme storm and the associated flood. The flood occurred at the end of a climatic anomaly of prolonged drought and warm conditions over Europe and the Mediterranean region. A characteristic of the event is its organization in well-defined banded structures, some of which persisted in the same locations for the duration of the event. The steadiness of these rainbands led to highly variable precipitation accumulations and, associated with orographic enhancement, played a central role in the space–time organization of the storm. Two dominant controls on extreme flood response are recognized and analyzed: steadiness of convective bands and dry antecedent soil moisture conditions.


Sign in / Sign up

Export Citation Format

Share Document