Chemical Profile and Antimicrobial Activity of Essential Oil of Piper ilheusense

2016 ◽  
Vol 52 (2) ◽  
pp. 331-333 ◽  
Author(s):  
R. A. de Oliveira ◽  
A. M. A. D. de Assis ◽  
L. A. M. da Silva ◽  
J. L. Andrioli ◽  
F. F. de Oliveira
2016 ◽  
Vol 10 (29) ◽  
pp. 442-449 ◽  
Author(s):  
R N A Medeiros Sandra ◽  
A de Melo Filho Antonio ◽  
N R da Costa Habdel ◽  
dos Santos Silva Francisco ◽  
C dos Santos Ricardo ◽  
...  

Author(s):  
Nor Hisam Zamakshshari ◽  
Idris Adewale Ahmed ◽  
Nur Alyaa Mat Didik ◽  
Muhammad Nazil Afiq Nasharuddin ◽  
Najihah Mohd Hashim ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3943 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Vladimir Sikora ◽  
Ivanka B. Semerdjieva ◽  
Miroslava Kačániová ◽  
Tess Astatkie ◽  
...  

The hypothesis of this study was that we can modify the essential oil (EO) profile of hemp (Cannabis sativa L.) and obtain fractions with differential composition and antimicrobial activity. Therefore, the objective was to evaluate the effects of grinding of hemp biomass before EO extraction and fractionation during distillation on EO profile and antimicrobial activity. The study generated a several EO fractions with a diversity of chemical profile and antimicrobial activity. The highest concentrations of β-pinene and myrcene in the EO can be obtained in the 5–10 min distillation time (DT) of ground material or in the 80–120 min DT of nonground material. High δ-3-carene and limonene EO can be obtained from 0–5 min DT fraction of nonground material. High eucalyptol EO can be sampled either in the 0–5 min DT of the ground material or in the 80–120 min of nonground material. Overall, the highest concentrations of β-caryophyllene, α-(E)-bergamotene, (Z)-β-farnesene, α-humulene, caryophyllenyl alcohol, germacrene D-4-ol, spathulenol, caryophyllene oxide, humulene epoxide 2, β-bisabolol, α-bisabolol, sesquiterpenes, and cannabidiol (CBD) can be obtained when EO is sampled in the 80–120 min DT and the material is nonground. Monoterpenes in the hemp EO can be increased twofold to 85% by grinding the material prior to distillation and collecting the EO in the first 10 min. However, grinding resulted in a slight but significant decrease in the CBD concentration of the EO. CBD-rich oil can be produced by collecting at 120–180 min DT. Different EO fractions had differential antimicrobial activity. The highest antimicrobial activity of EO fraction was found against Staphylococcus aureus subsp. aureus. THC-free EO can be obtained if the EO distillation is limited to 120 min. The results can be utilized by the hemp processing industry and by companies developing new hemp EO-infused products, including perfumery, cosmetics, dietary supplements, food, and pharmaceutical industries.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
SN Ebrahimi ◽  
M Yousefzadi ◽  
A Sonboli ◽  
F Miraghasi ◽  
S Ghiasi ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Mojgan Alizadeh ◽  
Akram Arianfar ◽  
Ameneh Mohammadi

Objective: Ziziphora clinopodioides is an edible medicinal plant belongs to the Labiatae family that widespread all over Iran. It used as culinary and also in cold and cough treatments in Iran. The aim of present work was to evaluate the effect of different timeframes during the hydrodistillation on essential oil composition, antimicrobial and antioxidant activity. Materials and Methods: The essential oil of Z. clinopodiodes was extracted via hydrodistillation with Clevenger apparatus. The fractions of essential oil were captured at 6 times from the beginning of the distillation: (10, 20, 60, 120, 180 and 240 min). The fractions of essential oil were analyzed by GC/MS and their antibacterial, antifungal and antioxidant activities were studied by Disk - well diffusion and DPPH methods respectively. Results: Six distillation times and whole essential oil were captured during the hydrodistillation. Essential oil yield dropped off significantly during distillation progressed (1.0% for 10 min and 0.025 for 240 min). 1,8 Cineol, Isomenthone, Pulegone, Piperitenone and Citronellic acid were major compounds in fractions and they were affected by distillation times. Pulegone was major compound in all of essential oils. In antioxidant activity assay, whole essential oil was stronger than was stronger than positive control and fractions of essential oil, because of higher levels of Isomenthone, Piperitenone and Citronellic acid. Strongest antimicrobial activity against S. aureus, E. coli and C. albicans was observed from 10 min fraction. Conclusion: Our results indicated that distillation time can create essential oils with specific properties and we can achieve to more efficient essential oil in short times.


2020 ◽  
Vol 10 ◽  
Author(s):  
Navadha Bhatt ◽  
Navabha Joshi ◽  
Kapil Ghai ◽  
Om Prakash

Background: The Lamiaceae (Labiatae) is one of the most diverse and widespread plant families’ in terms of ethno medicine and its medicinal value is based on the volatile oils concentration. This family is important for flavour, fragrance and medicinal properties. Manyplants belonging to this family have indigenous value. Method: The essential oil of Plectranthus gerardianusBenth. (Lamiaceae), was analysed by GC and GC-MS analysis, while the major component was isolated and conformed by NMR spectroscopy. Result: The oil was found to be rich in oxygenated monoterpenes, which contribute around 62% of the total oil. The major components identified were fenchone (22.90%) and carvenone oxide (16.75%), besides other mono and sesquiterpenoids. The in-vitro antimicrobial activity of essential oil was tested against three gram negative bacteria viz. Pasteurellamultocida, Escherichia coli, and Salmonella enterica, two gram positive bacteria viz. Staphylococcus aureus and Bacillus subtilis and two fungi viz. Candida albicans and Aspergillusflavus. The antimicrobial activity of the oil was also compared to the antimicrobial activity of leaf essential oil of another Himalayan plant viz. Nepetacoerulescens. Conclusion: The oil showed in-vitro antimicrobial activity against all the microbial strains and can lessen the ever-growing demand of potentially hazardous antibiotics for treatment.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 192 ◽  
Author(s):  
Sanae Akkaoui ◽  
Anders Johansson ◽  
Maâmar Yagoubi ◽  
Dorte Haubek ◽  
Adnane El hamidi ◽  
...  

In this study, the essential oil of Origanum vulgare was evaluated for putative antibacterial activity against six clinical strains and five reference strains of Aggregatibacter actinomycetemcomitans, in comparison with some antimicrobials. The chemical composition of the essential oil was analyzed, using chromatography (CG) and gas chromatography–mass spectrometry coupled (CG–MS). The major compounds in the oil were Carvacrol (32.36%), α-terpineol (16.70%), p-cymene (16.24%), and Thymol (12.05%). The antimicrobial activity was determined by an agar well diffusion test. A broth microdilution method was used to study the minimal inhibitory concentration (MIC). The minimal bactericidal concentration (MBC) was also determined. The cytotoxicity of the essential oil (IC50) was <125 µg/mL for THP-1 cells, which was high in comparison with different MIC values for the A. actinomycetemcomitans strains. O. vulgare essential oil did not interfere with the neutralizing capacity of Psidium guajava against the A. actinomycetemcomitans leukotoxin. In addition, it was shown that the O. vulgare EO had an antibacterial effect against A. actinomycetemcomitans on a similar level as some tested antimicrobials. In view of these findings, we suggest that O.vulgare EO may be used as an adjuvant for prevention and treatment of periodontal diseases associated to A. actinomycetemcomitans. In addition, it can be used together with the previously tested leukotoxin neutralizing Psidium guajava.


Author(s):  
Mansureh Ghavam ◽  
Afsaneh Afzali ◽  
Maria Manconi ◽  
Gianluigi Bacchetta ◽  
Maria Letizia Manca

Abstract Background Essential oil of Rosa × damascena Herrm. is one of the most valuable and important raw materials for the flavor and fragrance industry. The cultivation of this plant has ancient origins, and Kashan was one of the first mountainous regions of Iran dealing with the cultivation of R. × damascena. In this study, both chemical composition and antimicrobial activity of different rose essential oils obtained from five mountainous areas of Kashan region (Maragh, Qamsar, Sadeh, Javinan, and Kamoo) has been investigated along with the influence of the environmental conditions on these properties. Results Results showed that yield and chemical composition of essential oils obtained from Rosa × damascena were significantly affected by the collection area. In particular, the yield of oils varied from ~0.08 to ~0.132% and citronellol (36.70-9.18%), geraniol (12.82-0.47%), nonadecane (22.73-10.36%), heneicosane (31.7-11.43%), and 1-nonadecene (6.03-3.93%) have been detected as main compounds in all the plants collected, but at different concentrations depending on the collection area. The best fragrance and the highest yield were found in the oil from Kamoo area. Similarly to the chemical composition, the antimicrobial activity of the essential oils was affected by their origin, and essential oil obtained from plants collected from Kamoo area disclosed the highest antibacterial and antifungal efficacy. Its inhibition halos were 17.33±0.58 mm against Aspergillus brasiliensis, 15.67±0.58 mm against Staphylococcus aureus, and 12.33±0. 58 mm against Streptococcus pyogenes. Essential oils of R. damascena were also effective against Gram-negative Pseudomonas aeruginosa and they had a MIC value of 62.50 μg/mL irrespective of the collection area (except the oil from Javinan area). On the contrary, the highest antifungal power against Candida albicans yeast was reached using the essential oil obtained from plants collected in Javinan region (MIC and MBC ~62.50 μg/mL). Conclusions Overall results underline the influence of environmental conditions of the different areas of Kashan region, on the chemical composition of and antimicrobial activity of the essential oils of Rosa × damascena. In addition, results disclosed that Kamoo seemed to be the most suitable area for the competitive cultivation of R. × damascena to the intensive production of aromatic flower oil and natural antimicrobial essential oils.


Sign in / Sign up

Export Citation Format

Share Document