scholarly journals Effect of β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRγ and glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats

2020 ◽  
Vol 72 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Sundaram Ramalingam ◽  
Meenatchi Packirisamy ◽  
Muthu Karuppiah ◽  
Ganesh Vasu ◽  
Rahul Gopalakrishnan ◽  
...  
2020 ◽  
Author(s):  
Chunyan Zhao ◽  
Xiaoteng Cui ◽  
Baoxin Qian ◽  
Nan Zhang ◽  
Lingbiao Xin ◽  
...  

Abstract Background: The multifunctional protein SND1 was reported to be involved in a variety of biological processes, such as cell cycle, proliferation or lipogenesis. We previously proposed that global-expressed SND1 in vivo is likely to be a key regulator for ameliorating HFD-induced hepatic steatosis and systemic insulin resistance. Herein, we are very interested in investigating further whether the hepatocyte-specific deletion of SND1 affects the insulin resistance or acute liver failure (ALF) of mice.Methods: By using Cre-loxP technique, we constructed conditional knockout (LKO) mice of SND1 driven by albumin in hepatocytes and analyze the changes of glucose homeostasis, cholesterol level, hepatic steatosis and hepatic failure under the treatment of high-fat diet (HFD) or upon the simulation of Lipopolysaccharide/galactosamine (LPS/GalN).Results: No difference for the body weight, liver weight, and cholesterol level was detected. Furthermore, we did not observe the alteration of glucose homeostasis in SND1 hepatic knockout mice on either chow diet or high-fat diet. Besides, hepatocyte-specific deletion of SND1 failed to influence the hepatic failure of mice induced by LPS/GalN.Conclusions: These findings suggest that hepatic SND1, independently, is insufficient for changing glucose homeostasis, hepatic lipid accumulation and inflammation. The synergistic action of multiple organs may contribute to the role of SND1 in insulin sensitivity or inflammatory response.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1829 ◽  
Author(s):  
Lepore ◽  
Maggisano ◽  
Bulotta ◽  
Mignogna ◽  
Arcidiacono ◽  
...  

Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.


Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5311-5317 ◽  
Author(s):  
Claudio Sartori ◽  
Pierre Dessen ◽  
Caroline Mathieu ◽  
Anita Monney ◽  
Jonathan Bloch ◽  
...  

Abstract Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Qi ◽  
Bo Yang ◽  
Cailing Ren ◽  
Jian Fu ◽  
Jun Zhang

We aimed to investigate whether swimming exercise could improve insulin resistance (IR) by regulating tripartite motif family protein 72 (TRIM72) expression and AKT signal pathway in rats fed with high-fat diet. Five-week-old rats were classified into 3 groups: standard diet as control (CON), high-fat diet (HFD), and HFD plus swimming exercise (Ex-HFD). After 8 weeks, glucose infusion rate (GIR), markers of oxidative stress, mRNA and protein expression of TRIM72, protein of IRS, p-AKTSer473, and AKT were determined in quadriceps muscles. Compared with HFD, the GIR, muscle SOD, and GSH-Px were significantly increased (p<0.05, resp.), whereas muscle MDA and 8-OHdG levels were significantly decreased (p<0.05andp<0.01) in Ex-HFD. Expression levels of TRIM72 mRNA and protein in muscles were significantly reduced (p<0.05andp<0.01), whereas protein expression levels of IRS-1, p-AKTSer473, and AKT were significantly increased in Ex-HFD compared with HFD (p<0.01,p<0.01, andp<0.05). These results suggest that an 8-week swimming exercise improves HFD-induced insulin resistance maybe through a reduction of TRIM72 in skeletal muscle and enhancement of AKT signal transduction.


2021 ◽  
Author(s):  
Xiaojun Ma ◽  
Yujie Guo ◽  
Pengfei Li ◽  
Jingjing Xu ◽  
Shengqi Dong ◽  
...  

Abstract Background: Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are two prevalent diseases with comparable pathophysiological features and genetic predisposition. Polyunsaturated fatty acids (PUFAs) are essential in maintaining normal brain function. However, little is known about the impact of dietary n-6/n-3 PUFA ratio on AD-like pathology, especially in high-fat diet (HFD)-fed AD model mice. Methods: In the present study, the APP/PS1 mice were treated with 60% HFD for 3.5 months to induced insulin resistance. After that, 45% HFD with different n-6/n-3 PUFA ratios (n-6/n-3=1:1, 5:1 or 16:1) was applied for additional 3.5 months treatment. Following the dietary intervention, the behavior of mice was observed using the Water maze. Following behavioral testing, the animals were euthanized, and serum and tissue samples were collected for biochemical, histological and pathological analyses and evaluation. Cortical fatty acid profile was measured by gas chromatography. Western Blot and immunohistochemistry methods were used to detect protein expression of molecules related to AD pathology and insulin signaling pathway(s) in the brain sample tissues. Immunofluorescence assay was used to uncover the expression and migration of NF-κB in the cortex. qPCR method was applied to determine the gene expression of cortical pro-inflammatory cytokines.Results: HFD caused insulin resistance, increased serum IL-6 and TNF-α level, elevated cortical soluble Aβ1-40, Aβ1-42 content, and increased brain n-6/n-3 PUFAs ratio in APP/PS1 mice. Increased APP and BACE1 protein expression and p-IR/IR ratio, but decreased pro-inflammatory cytokines mRNA expression was observed in the cortex from 60% HFD-fed APP/PS1 mice. N-3 PUFAs rich diet (n-6/n-3=1:1) relieved insulin resistance and hyperlipidemia induced by 60% HFD. Cortical soluble Aβ1-40 and Aβ1-42 contents, the expression of cortical APP, GLUT3, insulin metabolism related molecules, and NF-κB pathway downstream pro-inflammatory cytokines showed a dietary n-6/n-3 PUFAs ratio-dependent way, indicating that dietary n-6/n-3 PUFA ratio plays a critical role in modifying the responses of serum inflammatory cytokine, AD pathology, cortical n-6/n-3 PUFAs ratio, insulin signaling and neuroinflammation to HFD treatment.Conclusion: Dietary n-6/n-3 PUFA ratio play an important role in modifying AD pathophysiology, insulin signaling pathway, and neuro-inflammation response to high fat diet treatment in brain.


Author(s):  
O. N. Briggs ◽  
E. O. Nwachuku ◽  
D. Tamuno-Emine ◽  
N. Nsirim ◽  
K. N. Elechi-Amadi

Diabetes mellitus is an epidemic, with a huge disease burden on the patients. This has led to an increase in the use of herbal remedies and combination therapies to reduce this burden. Aim: This study evaluates the biochemical and oxidative changes in type 2 diabetic rats, treated with metformin and the polyherbal drug diawell. Methodology: A total of 35 male Wistar albino rats weighing between 120-220 g were used for this study. The rats were placed on high fat diet, and diabetes was induced by a single intraperitoneal injection of freshly prepared streptozotocin (STZ) (45 mg/kg body wt). Fasting plasma glucose (FPG) was determined using the glucose oxidase method. Fasting plasma insulin (FPI), total oxidant status (TOS), total antioxidant status (TAS) and superoxide dismutase (SOD) levels were quantitatively determined by a rat-specific sandwich-enzyme linked immunosorbent assay (ELISA) method. Insulin resistance (IR) was determined using the homeostatic model assessment for insulin resistance (HOMA-IR) method. Oxidative stress index (OSI) was determined by the ratio of TOS to TAS. Phytochemical analysis was also done on the herbal tablet. Results: Mean FPG levels were significantly lower (p˂0.05) in all groups, except the group administered diawell, which was not significantly different (p>0.05), compared to the diabetic control. Mean FPG levels were significantly higher (p˂0.05) in the metformin group, diawell group, but showed no significant difference (p>0.05) in the combination group, compared to the negative control. HOMA-IR was significantly higher (p<0.05) in the diabetic control compared to the negative control and treatment groups. The metformin and diawell groups had significantly higher (p˂0.05) HOMA-IR values, whereas the combination (metformin + diawell) showed no significant difference (p>0.05) when compared to the negative control. TOS was significantly higher (p<0.05) in the diabetic control compared to the negative control and treatment groups. The metformin and diawell groups had significantly higher (p˂0.05) TOS values, whereas the combination (metformin + diawell) showed no significant difference (p>0.05) when compared to the negative control. There was significantly lower (p˂0.05) TAS levels in the diabetic and treatment groups, compared to the negative control. OSI values were significantly lower (p˂0.05) in all groups when compared to the diabetic control. Also, OSI values were significantly higher (p˂0.05) in the treatment groups compared to the negative control. Conclusion: There was depletion of antioxidant parameters and an increase in oxidative stress in the diabetic rats. Administration of metformin and the polyherbal tablet diawell individually, were not effective in correcting the pathological and biochemical changes associated with diabetes. However, the combination treatment produced a better glycaemic response and attenuated the oxidant status in the rats. Antioxidant therapy should be incorporated in diabetes management, and anti-diabetic herbals properly evaluated.


Sign in / Sign up

Export Citation Format

Share Document