Hierarchical scheduling learning optimisation of two-area active distribution system considering peak shaving demand of power grid

Author(s):  
Hao Tang ◽  
Chang Liu ◽  
Yonglun Cao ◽  
Kai Lv ◽  
Qianli Zhang
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 352
Author(s):  
Saad Ullah Khan ◽  
Khawaja Khalid Mehmood ◽  
Zunaib Maqsood Haider ◽  
Muhammad Kashif Rafique ◽  
Muhammad Omer Khan ◽  
...  

In this paper, a coordination method of multiple electric vehicle (EV) aggregators has been devised to flatten the system load profile. The proposed scheme tends to reduce the peak demand by discharging EVs and fills the valley gap through EV charging in the off-peak period. Upper level fair proportional power distribution to the EV aggregators is exercised by the system operator which provides coordination among the aggregators based on their aggregated energy demand or capacity. The lower level min max objective function is implemented at each aggregator to distribute power to the EVs. Each aggregator ensures that the EV customers’ driving requirements are not relinquished in spite of their employment to support the grid. The scheme has been tested on IEEE 13-node distribution system and an actual distribution system situated in Seoul, Republic of Korea whilst utilizing actual EV mobility data. The results show that the system load profile is smoothed by the coordination of aggregators under peak shaving and valley filling goals. Also, the EVs are fully charged before departure while maintaining a minimum energy for emergency travel.


2013 ◽  
Vol 291-294 ◽  
pp. 2022-2027
Author(s):  
Hui Shi Liang ◽  
Hai Tao Liu ◽  
Jian Su

This paper presents a methodology for substation optimal planning considering DG for peak shaving. Utility can take effective demand-side management (DSM) to encourage customer-owned DG to participate in peak load shaving, and it can also construct utility DG to meet the peak load demand. In this paper, the impact of DG on peak load shaving is analyzed, and DG is taken as a complement to T&D system to meet load demand, which is considered in the substation planning. Substations sizing and location and new-built utility DG capacity is optimized using Particle Swarm Optimization (PSO), in which supply area of each substation is obtained by Voronoi diagram method. Case study shows that planning result considering DG for peak shaving can defer T&D system expansion so that considerable investment can be saved. Especially for those areas with high cost of T&D system construction, constructing DG to meet peak load demand would be a more economic way.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1918
Author(s):  
Shanshan Shi ◽  
Chen Fang ◽  
Haojing Wang ◽  
Jianfang Li ◽  
Yuekai Li ◽  
...  

As China proposes to achieve carbon peak by 2030 and carbon neutrality by 2060, as well as the huge pressure on the power grid caused by the load demand of the energy supply stations of electric vehicles (EVs), there is an urgent need to carry out comprehensive energy management and coordinated control for EVs’ energy supply stations. Therefore, this paper proposed a two-step intelligent control method known as ISOM-SAIA to solve the problem of the 24 h control and regulation of green/flexible EV energy supply stations, including four subsystems such as a photovoltaic subsystem, an energy storage subsystem, an EV charging subsystem and an EV battery changing subsystem. The proposed control method has two main innovations and contributions. One is that it reduces the computational burden by dividing the multi-dimensional mixed-integer programming problem of simultaneously optimizing the 24 h operation modes and outputs of four subsystems into two sequential tasks: the classification of data-driven operation modes and the rolling optimization of operational outputs. The other is that proper carbon transaction costs and carbon emission constraints are considered to help save costs and reduce carbon emissions. The simulation analysis conducted in this paper indicates that the proposed two-step intelligent control method can help green/flexible EV energy supply stations to optimally allocate energy flows between four subsystems, effectively respond to peak shaving and valley filling of power grid, save energy costs and reduce carbon emissions.


Sign in / Sign up

Export Citation Format

Share Document